scholarly journals Near-infrared excited luminescence and in vitro imaging of HeLa cells by using Mn2+ enhanced Tb3+ and Yb3+ cooperative upconversion in NaYF4 nanocrystals

2019 ◽  
Vol 1 (9) ◽  
pp. 3463-3473 ◽  
Author(s):  
Katarzyna Prorok ◽  
Michał Olk ◽  
Michał Skowicki ◽  
Agnieszka Kowalczyk ◽  
Agata Kotulska ◽  
...  

To improve the Tb3+ upconversion emission intensity, a new approach, i.e. Mn2+ co-doping, has been proposed and verified in this work. The significant enhancement of the emission intensity as a result of the introduction of Mn2+ ions was observed.

2011 ◽  
Vol 399-401 ◽  
pp. 982-986
Author(s):  
Jin Liu ◽  
Dong Mei Shi ◽  
Ying Gang Zhao ◽  
Xiao Feng Wang

The visible and near infrared emission spectra of Er3+/Tm3+-doped Ga2O3-Bi2O3-PbO-GeO2(GBPG) glasses excited at 808 nm are experimentally investigated. The results reveal that 1.53 µm emission were enhanced with an increase of Er3+concentration. Furthermore, the incorporation of Er3+into Tm3+-doped systems has also resulted in intense 522, 545 and 693nm upconversion emission intensity and an weak 660 nm red emission. The possible mechanism and related discussions on this phenomenon have been presented. The results show that Er3+/Tm3+-codoped GBPG glass may be a promising materials for developing laser and fiber optical devices.


RSC Advances ◽  
2014 ◽  
Vol 4 (32) ◽  
pp. 16710-16715 ◽  
Author(s):  
Shuanglong Yuan ◽  
Huidan Zeng ◽  
Xuanshun Wu ◽  
Zhao Liu ◽  
Jing Ren ◽  
...  

Significant enhancement of the upconversion emission intensity of Y2O2S:Er3+ was achieved by Mn2+ sensitizing under 1550 nm excitation.


2018 ◽  
Vol 62 (1) ◽  
Author(s):  
Linda Bertel Garay ◽  
Fernando Martínez Ortega ◽  
Stelia Carolina Méndez-Sanchez

<p>Folic acid (FA) is used as a recognition molecule to achieve selective internalization in cancer cells. Here functionalized gold nanoparticles with folic acid (AuNP-FA) are proposed as suitable therapeutic agents for cervix cancer cells by photothermal damage. The functionalized gold nanoparticles with folic acid were synthesized by mixing hydrogen tetrachloroaurate with folic acid in a molar ratio of 0.56/1 under radiation of mercury lamp (λ<sub>max</sub>=254 nm). HeLa cells were incubated with AuNP-FA during 48 h, then were irradiated and the cytotoxicity was analyzed 12 h after irradiation. The AuNP-FA were dose-dependent cytotoxic under irradiation and not cytotoxic in the absence of radiation. The viability of cancer cells treated with functionalized and non-functionalized gold nanoparticles (AuNPs), with and without near infrared light at 808 nm, was measured by MTT assays. This work provides useful guidance toward the synthesis of biocompatible nanomaterials for biological applications.</p>


Nanoscale ◽  
2017 ◽  
Vol 9 (47) ◽  
pp. 18661-18667 ◽  
Author(s):  
L. Wang ◽  
L. Ren ◽  
D. Mitchell ◽  
G. Casillas-Garcia ◽  
W. Ren ◽  
...  

A heterogeneous NaYF4:Yb,Tm@ZnO nanoparticle with an epitaxial interface is prepared, and it possesses an enhanced upconversion emission intensity and an excellent photocurrent response.


Open Physics ◽  
2012 ◽  
Vol 10 (2) ◽  
Author(s):  
Ljubica Djačanin ◽  
Miroslav Dramićanin ◽  
Svetlana Lukić-Petrović ◽  
Dragoslav Petrović ◽  
Marko Nikolić

AbstractLithium-indium oxide is a high-density (5.9 g·cm−3), wide band-gap semiconductor with promising applications for scintillating detection of solar neutrinos as well as for efficient phosphorescence when doped with Er3+ or Sm3+ ions. In this report, we demonstrate visible upconversion emission of Er3+-doped LiInO2 synthesized by a simple solid-state chemistry procedure and discuss mechanisms responsible for pumping the Er3+ ions to upper levels. Intense upconversion emission is observed in the green and red spectral regions under near-infrared excitation, and it is greatly enhanced by co-doping with Yb3+ ions. We also examined the upconversion intensity change as a function of temperature, and, consequently, possible applications of this material as a low-temperature sensor.


2019 ◽  
Vol 16 (6) ◽  
pp. 478-484
Author(s):  
Kenia Barrantes ◽  
Mary Fuentes ◽  
Luz Chacón ◽  
Rosario Achí ◽  
Jorge Granados-Zuñiga ◽  
...  

Two ether and one ester derivatives of the 4-nitro-3-hydroxybenzoic acid were synthesized and characterized. The in vitro antimicrobial and cytotoxic activities of the three novel compounds were also evaluated. The aromatic derivatives showed antibacterial activity against one of the four microorganisms tested and two compounds (C8 and NOBA) had a lower IC50 in HeLa cells.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jungang Li ◽  
Chaoqian Zhao ◽  
Chun Liu ◽  
Zhenyu Wang ◽  
Zeming Ling ◽  
...  

Abstract Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair.


Sign in / Sign up

Export Citation Format

Share Document