scholarly journals Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport

2019 ◽  
Vol 1 (10) ◽  
pp. 4025-4040 ◽  
Author(s):  
Vipul Sharma ◽  
Kyriacos Yiannacou ◽  
Markus Karjalainen ◽  
Kimmo Lahtonen ◽  
Mika Valden ◽  
...  

As the Earth's atmosphere contains an abundant amount of water as vapors, a device which can capture a fraction of this water could be a cost-effective and practical way of solving the water crisis.

2020 ◽  
Vol 635 ◽  
pp. A156
Author(s):  
K. G. Strassmeier ◽  
I. Ilyin ◽  
E. Keles ◽  
M. Mallonn ◽  
A. Järvinen ◽  
...  

Context. Observations of the Earthshine off the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in front of the Sun. Aims. We thus aim at transmission spectroscopy of an Earth transit by tracing the solar spectrum during the total lunar eclipse of January 21, 2019. Methods. Time series spectra of the Tycho crater were taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope in its polarimetric mode in Stokes IQUV at a spectral resolution of 130 000 (0.06 Å). In particular, the spectra cover the red parts of the optical spectrum between 7419–9067 Å. The spectrograph’s exposure meter was used to obtain a light curve of the lunar eclipse. Results. The brightness of the Moon dimmed by 10.m75 during umbral eclipse. We found both branches of the O2 A-band almost completely saturated as well as a strong increase of H2O absorption during totality. A pseudo O2 emission feature remained at a wavelength of 7618 Å, but it is actually only a residual from different P-branch and R-branch absorptions. It nevertheless traces the eclipse. The deep penumbral spectra show significant excess absorption from the Na I 5890-Å doublet, the Ca II infrared triplet around 8600 Å, and the K I line at 7699 Å in addition to several hyper-fine-structure lines of Mn I and even from Ba II. The detections of the latter two elements are likely due to an untypical solar center-to-limb effect rather than Earth’s atmosphere. The absorption in Ca II and K I remained visible throughout umbral eclipse. Our radial velocities trace a wavelength dependent Rossiter-McLaughlin effect of the Earth eclipsing the Sun as seen from the Tycho crater and thereby confirm earlier observations. A small continuum polarization of the O2 A-band of 0.12% during umbral eclipse was detected at 6.3σ. No line polarization of the O2 A-band, or any other spectral-line feature, is detected outside nor inside eclipse. It places an upper limit of ≈0.2% on the degree of line polarization during transmission through Earth’s atmosphere and magnetosphere.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 312 ◽  
Author(s):  
Joy Sarkar ◽  
Nilanjan Chakraborty ◽  
Arindam Chatterjee ◽  
Avisek Bhattacharjee ◽  
Disha Dasgupta ◽  
...  

Biosynthesis of copper oxide nanoparticles (CuONPs) in a cost-effective and eco-friendly way has gained its importance. CuONPs has been prepared from copper sulfate by using Adiantum lunulatum whole plant extract. CuONPs have been characterized by X-ray diffraction, Fourier transform infrared spectroscopic, transmission electron microscope, etc. Mono-disperse, spherical, pure, and highly stable CuONPs have formed with an average diameter of 6.5 ± 1.5 nm. Biosynthesized CuONPs at different concentrations were applied to seeds of Lens culinaris. Physiological characteristics were investigated in the germinated seeds. Roots obtained from the seeds treated with 0.025 mgmL−1 concentration of CuONPs showed highest activity of different defence enzymes and total phenolics. However, at higher concentration it becomes close to control. It showed gradual increase of antioxidative enzymes, in accordance with the increasing dose of CuONPs. Likewise, lipid peroxidation and proline content gradually increased with the increasing concentration. Reactive oxygen species and nitric oxide generation was also altered due to CuONPs treatment indicating stress signal transduction. Finally, this study provides a new approach of the production of valuable CuONPs, is a unique, economical, and handy tool for large scale saleable production which can also be used as a potent plant defence booster instead of other commercial uses.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 613 ◽  
Author(s):  
Nicola Gargiulo ◽  
Antonio Peluso ◽  
Domenico Caputo

This review focuses on the use of metal–organic frameworks (MOFs) for adsorbing gas species that are known to weaken the thermal self-regulation capacities of Earth’s atmosphere. A large section is dedicated to the adsorption of carbon dioxide, while another section is dedicated to the adsorption of other different gas typologies, whose emissions, for various reasons, represent a “wound” for Earth’s atmosphere. High emphasis is given to MOFs that have moved enough ahead in their development process to be currently considered as potentially usable in “real-world” (i.e., out-of-lab) adsorption processes. As a result, there is strong evidence of a wide gap between laboratory results and the industrial implementation of MOF-based adsorbents. Indeed, when a MOF that performs well in a specific process is commercially available in large quantities, economic observations still make designers tend toward more traditional adsorbents. Moreover, there are cases in which a specific MOF remarkably outperforms the currently employed adsorbents, but it is not industrially produced, thus strongly limiting its possibilities in large-scale use. To overcome such limitations, it is hoped that the chemical industry will be able to provide more and more mass-produced MOFs at increasingly competitive costs in the future.


Author(s):  
J.C.A. Craik

Many large-scale properties of the biosphere are affected or determined by the activities of living organisms and are maintained at remarkably constant values over long periods. For example, the oxygen content of the atmosphere appears to have been maintained near its present value for hundreds of millions of years, despite the rapid flux of oxygen between production by plants and consumption by animals and decomposing microorganisms. (In this article, I shall use 'biosphere' to denote the whole of the concentric shell of the planet Earth which holds life, and 'biota' to mean all living organisms. Others have sometimes used 'biosphere' to mean the latter.) Lovelock was the first to show clearly how the composition of the Earth's atmosphere, unlike that of Mars or Venus, was held well away from thermodynamic equilibrium by the activities of living organisms (Lovelock, 1983). Other biospheric properties, such as temperature and oceanic pH and salinity, have similarly remained fairly constant despite the existence of large perturbing influences (Lovelock, 1979).


2017 ◽  
Vol 5 (48) ◽  
pp. 25328-25337 ◽  
Author(s):  
Handong Cho ◽  
Byungrak Park ◽  
Moonsu Kim ◽  
Sangmin Lee ◽  
Woonbong Hwang

Here we report a novel approach to fabricate conical microstructures on aluminum substrates using a cost-effective and scalable hydrothermal synthesis method.


Author(s):  
Michael I. Budyko ◽  
Alexander B. Ronov ◽  
Alexander L. Yanshin

Sign in / Sign up

Export Citation Format

Share Document