Effective solid phase extraction using centrifugation combined with a vacuum-based method for ambient gaseous PAHs

2019 ◽  
Vol 43 (47) ◽  
pp. 18726-18740
Author(s):  
Wittaya Tala ◽  
Somporn Chantara

The developed SPE clean-up procedure provides much better efficiency for a group of low molecular weight PAHs than the conventional procedure. It is therefore appropriate for extraction of gaseous PAHs from ambient air samples.

2014 ◽  
Vol 6 (16) ◽  
pp. 6375-6380 ◽  
Author(s):  
Ting Du ◽  
Jing Cheng ◽  
Min Wu ◽  
Xiaohua Wang ◽  
Hongbin Zhou ◽  
...  

A novel low molecular weight methomyl molecule-imprinted monolith (MIM) was prepared inside a polypropylene pipette tip by polymerization reaction.


2011 ◽  
Vol 166 (3) ◽  
pp. 994-1001 ◽  
Author(s):  
Francesco Ferri ◽  
Lorenzo Bertin ◽  
Alberto Scoma ◽  
Leonardo Marchetti ◽  
Fabio Fava

2018 ◽  
Author(s):  
Bastian Stieger ◽  
Gerald Spindler ◽  
Dominik van Pinxteren ◽  
Achim Grüner ◽  
Markus Wallasch ◽  
...  

Abstract. A method is presented to quantify the low-molecular weight organic acids formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phase in a two-hourly time resolution, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (IC) instrument. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates both for isocratic and for gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid phase extraction consisting of a methacrylate polymer based sorbent with quaternary ammonium groups. The limits of detection of the method range between 7.1 ng m−3 for methanesulfonate and 150.3 ng m−3 for pyruvate. Precisions are below 1.0 %, except for glycolate (2.9 %) and succinate (1.0 %). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional organic acid IC systems are in agreement with each other (R2 = 0.95 − 0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 553 ng m−3 for acetic acid, followed by formic (286 ng m−3), pyruvic acid (182 ng m−3), propionic (179 ng m−3), butyric (98 ng m−3) and glycolic (71 ng  m−3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 63 ng  m−3, 74 ng m−3 and 35 ng m−3, respectively. Elevated concentrations in the late afternoon of gas phase formic acid and particulate oxalate indicate a photochemical formation.


2019 ◽  
Vol 12 (1) ◽  
pp. 281-298 ◽  
Author(s):  
Bastian Stieger ◽  
Gerald Spindler ◽  
Dominik van Pinxteren ◽  
Achim Grüner ◽  
Markus Wallasch ◽  
...  

Abstract. A method is presented to quantify the low-molecular-weight organic acids such as formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phases, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (Compact IC) instrument. Therefore, every second hourly integrated MARGA gas and particle samples were collected and analyzed by the Compact IC, resulting in 12 values per day for each phase. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates for both isocratic and gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion-exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid-phase extraction consisting of a methacrylate-polymer-based sorbent with quaternary ammonium groups. The limits of detection of the method range between 0.5 ng m−3 for malonate and 17.4 ng m−3 for glutarate. Precisions are below 1.0 %, except for glycolate (2.9 %) and succinate (1.0 %). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional Compact IC are in agreement with each other (R2 = 0.95–0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 306 ng m−3 for acetic acid, followed by formic (199 ng m−3), propionic (83 ng m−3), pyruvic (76 ng m−3), butyric (34 ng m−3) and glycolic acid (32 ng m−3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 26, 31 and 30 ng m−3, respectively. Elevated concentrations of gas-phase formic acid and particulate oxalate in the late afternoon indicate photochemical formation as a source.


2018 ◽  
Vol 34 (10) ◽  
pp. 1149-1153 ◽  
Author(s):  
Ikuo UETA ◽  
Risa TAKENAKA ◽  
Koji FUJIMURA ◽  
Tomotaka YOSHIMURA ◽  
Shoji NARUKAMI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document