scholarly journals Analysis of antisense oligonucleotides with the use of ionic liquids as mobile phase modifiers

RSC Advances ◽  
2019 ◽  
Vol 9 (67) ◽  
pp. 39100-39110 ◽  
Author(s):  
Anna Kaczmarkiewicz ◽  
Judyta Zielak ◽  
Łukasz Nuckowski ◽  
Sylwia Studzińska

The main goal of this study was the investigation of the impact of several ionic liquids, commonly used as free silanol suppressors, on the retention and separation of phosphorothioate oligonucleotides.

2018 ◽  
Vol 33 (5) ◽  
pp. 822-834 ◽  
Author(s):  
Alexander Castro Grijalba ◽  
Pamela Y. Quintas ◽  
Emiliano F. Fiorentini ◽  
Rodolfo G. Wuilloud

Efficient Hg speciation analysis in different food samples was achieved with ionic liquids as mobile phase modifiers in HPLC-CV-AFS.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2325
Author(s):  
Ronan Invernizzi ◽  
Liliane Guerlou-Demourgues ◽  
François Weill ◽  
Alexia Lemoine ◽  
Marie-Anne Dourges ◽  
...  

Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.


2015 ◽  
Vol 210 ◽  
pp. 264-271 ◽  
Author(s):  
Kiki A. Kurnia ◽  
Catarina M.S.S. Neves ◽  
Mara G. Freire ◽  
Luís M.N.B.F. Santos ◽  
João A.P. Coutinho

2006 ◽  
Vol 61 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tomasz Bączek ◽  
Barbara Sparzak

Abstract A novel analytical approach involving the addition of an ionic liquid into the mobile phase of the thin-layer chromatography (TLC) system during the optimization of chromatographic separation of peptides was demonstrated. Different behavior of peptides in the TLC sytem was observed after the addition of 1,3-dimethylimidazolium methyl sulfate to the eluent in comparison to the system without the ionic liquid. The objective of the work was to study the effect of the addition of different contents of ionic liquid to the mobile phase comprising mostly water and to observe the behavior of peptides’ retention. The potential usefulness of environmentally friendly ionic liquids for the optimization of separation of peptides was demonstrated. An increase of Rf values was observed with increasing the ionic liquid content in the mobile phase. The benefits of the used approach were related to the separation achieved. Finally, quantitative structure-retention relationships (QSRR) were used for the studies on the predictions of peptides’ retention in the TLC systems with the addition of ionic liquid in terms of the predictions performed recently in HPLC systems.


2020 ◽  
Author(s):  
Alexander Schlaich ◽  
Dongliang Jin ◽  
Lyderic Bocquet ◽  
Benoit Coasne

Abstract Of particular relevance to energy storage, electrochemistry and catalysis, ionic and dipolar liquids display a wealth of unexpected fundamental behaviors – in particular in confinement. Beyond now well-documented adsorption, overscreening and crowding effects1,2,3, recent experiments have highlighted novel phenomena such as unconventional screening4 and the impact of the electronic nature – metallic versus insulating – of the confining surface on wetting/phase transitions5,6. Such behaviors, which challenge existing theoretical and numerical modeling frameworks, point to the need for new powerful tools to embrace the properties of confined ionic/dipolar liquids. Here, we introduce a novel atom-scale approach which allows for a versatile description of electronic screening while capturing all molecular aspects inherent to molecular fluids in nanoconfined/interfacial environments. While state of the art molecular simulation strategies only consider perfect metal or insulator surfaces, we build on the Thomas-Fermi formalism for electronic screening to develop an effective approach that allows dealing with any imperfect metal between these asymptotes. The core of our approach is to describe electrostatic interactions within the metal through the behavior of a `virtual' Thomas-Fermi fluid of charged particles, whose Debye length sets the Thomas-Fermi screening length λ in the metal. This easy-to-implement molecular method captures the electrostatic interaction decay upon varying λ from insulator to perfect metal conditions, while describing very accurately the capacitance behavior – and hence the electrochemical properties – of the metallic confining medium. By applying this strategy to a nanoconfined ionic liquid, we demonstrate an unprecedented wetting transition upon switching the confining medium from insulating to metallic. This novel approach provides a powerful framework to predict the unsual behavior of ionic liquids, in particular inside nanoporous metallic structures, with direct applications for energy storage and electrochemistry.


2006 ◽  
Vol 1119 (1-2) ◽  
pp. 202-208 ◽  
Author(s):  
M.J. Ruiz-Angel ◽  
S. Carda-Broch ◽  
A. Berthod

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Philipp Münzner ◽  
Catalin Gainaru ◽  
Roland Böhmer

Abstract Li-bis(trifluoromethylsulfonyl)imide based ionic liquids with either butyl-trimethylammonium or N,N-dimethyl-N-(2-(propionyloxy)-ethyl)butan-1-ammonium as the anion were studied using proton and fluorine relaxometry as well as using field-gradient diffusometry to gain separate access to cation and anion dynamics in these compounds. The transport parameters obtained for these ionic liquids are compared with the estimates based on the conductivity data from literature and from the present work. The impact of cation size on correlation effects, the latter parameterized in terms of various Haven ratios, is mapped out.


2020 ◽  
Vol 10 (23) ◽  
pp. 8552
Author(s):  
Sergio Brutti

Pyrrolidinium-based (Pyr) ionic liquids are a very wide family of molecular species. Pyrrolidinium cations are electrochemically stable in a large potential interval and their molecular size hinders their transport properties. The corresponding ionic liquids with trifluoromethyl sulphonyl imide anions are excellent solvents for lithium/sodium salts and have been demonstrated as electrolytes in aprotic batteries with enhanced safety standards. In this study, the analysis of the physicochemical properties of a homologous series of pyrrolidinium-based ionic liquids with general formula Pyr1,xTFSI (x = 1–8) have been tackled by first principles calculations based on the density functional theory. The molecular structures of isolated ions and ion pairs have been predicted by electronic structure calculations at B3LYP level of theory in vacuum or in simulated solvents. Thermodynamic properties have been calculated to evaluate the ion pairs dissociation and oxidation/reduction stability. This is the first systematic computational analysis of this series of molecules with a specific focus on the impact of the length of the alkyl chain on the pyrrolidinium cation on the overall physicochemical properties of the ion pairs.


Sign in / Sign up

Export Citation Format

Share Document