Metal–organic-frameworks-derived NaTi2(PO4)3/carbon composites for efficient hybrid capacitive deionization

2019 ◽  
Vol 7 (19) ◽  
pp. 12126-12133 ◽  
Author(s):  
Kai Wang ◽  
Yong Liu ◽  
Zibiao Ding ◽  
Yuquan Li ◽  
Ting Lu ◽  
...  

Metal–organic-framework-derived NaTi2(PO4)3/carbon composites with unique porous structure and improved electrical conductivity exhibit high desalination performance for hybrid capacitive deionization.

2015 ◽  
Vol 51 (60) ◽  
pp. 12020-12023 ◽  
Author(s):  
Yong Liu ◽  
Xingtao Xu ◽  
Miao Wang ◽  
Ting Lu ◽  
Zhuo Sun ◽  
...  

Porous carbon polyhedra were synthesized through direct carbonization of metal–organic frameworks and used as an electrode material for capacitive deionization.


2021 ◽  
Author(s):  
Bakytzhan Yeskendir ◽  
Jean-Philippe Dacquin ◽  
Yannick Lorgouilloux ◽  
Christian Courtois ◽  
Sebastien Royer ◽  
...  

Metal-organic frameworks represent a class of porous materials which developed considerably over the past few years. Their porous structure makes them outperforming conventional adsorbents in hot topics such as dihydrogen...


2016 ◽  
Vol 4 (15) ◽  
pp. 5467-5473 ◽  
Author(s):  
Xingtao Xu ◽  
Miao Wang ◽  
Yong Liu ◽  
Ting Lu ◽  
Likun Pan

Novel carbon nanotube-inserted porous carbon polyhedra synthesized from metal–organic frameworks were used for capacitive deionization with a superior electrosorption capacity.


2016 ◽  
Vol 4 (5) ◽  
pp. 894-899 ◽  
Author(s):  
Zhiyong Guo ◽  
Dillip K. Panda ◽  
Krishnendu Maity ◽  
David Lindsey ◽  
T. Gannon Parker ◽  
...  

The formation of guest-mediated π-donor/acceptor stacks within electroactive metal–organic frameworks activates long-range charge mobilization, boosting the electrical conductivity of the doped materials.


Author(s):  
AshokKumar Meiyazhagan

Abstract A few recent findings on ultrathin two-dimensional (2D) metal-organic frameworks (MOFs) were discussed in this spotlight review. MOFs are a class of materials with intriguing properties for possible applications in several fields ranging from catalysis to sensors and functional devices. To date, several synthesis strategies have been explored to derive crystalline 2D MOF structures. However, most synthetic strategies to obtain such materials remain underexplored. This highlighted review evaluated select synthesis strategies focused on deriving micron-sized 2D MOF crystals, emphasizing their rich chemistries. More importantly, the possibility of integrating the synthesized ultrathin 2D crystalline MOFs into the functional device and their electrical conductivity measurements are reviewed. Overall, this review provides the most recent outcomes in the ultrathin 2D MOF community and its influence on electronic devices.


2020 ◽  
Author(s):  
Jesse Park ◽  
Brianna Collins ◽  
Lucy Darago ◽  
Tomce Runcevski ◽  
Michael Aubrey ◽  
...  

<b>Materials that combine magnetic order with other desirable physical attributes offer to revolutionize our energy landscape. Indeed, such materials could find transformative applications in spintronics, quantum sensing, low-density magnets, and gas separations. As a result, efforts to design multifunctional magnetic materials have recently moved beyond traditional solid-state materials to metal–organic solids. Among these, metal–organic frameworks in particular bear structures that offer intrinsic porosity, vast chemical and structural programmability, and tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating strong magnetic exchange in extended metal–organic solids. Here, we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at <i>T</i><sub>C</sub> = 225 K in a mixed-valence chromium(II/III) triazolate compound, representing the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism is shown to proceed via a double-exchange mechanism, the first such observation in any metal–organic material. Critically, this mechanism results in variable-temperature conductivity with barrierless charge transport below <i>T</i><sub>C</sub> and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. Taken together, the insights gleaned from these results are expected to provide a blueprint for the design and synthesis of porous materials with synergistic high-temperature magnetic and charge transport properties. </b>


2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


2021 ◽  
Author(s):  
Fajar Inggit Pambudi ◽  
Michael William Anderson ◽  
Martin Attfield

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalene dicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2) from...


2021 ◽  
Vol 9 (7) ◽  
pp. 1811-1820
Author(s):  
Shuang Yan ◽  
Bin Luo ◽  
Jia He ◽  
Fang Lan ◽  
Yao Wu

Novel bimetallic metal–organic framework nanocomposites were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity and high selectivity toward phosphopeptides and good reusability of five cycles for enriching phosphopeptides.


Author(s):  
Marta Lara-Serrano ◽  
Silvia Morales-delaRosa ◽  
Jose M. Campos-Martin ◽  
Víctor Karim Abdelkader-Fernández ◽  
Luis Cunha-Silva ◽  
...  

The isomerization reaction of glucose to fructose was studied using five selected metal-organic frameworks (MOFs) as catalysts and a mixture of γ-valerolactone and 10% H2O as the solvent. MOFs with...


Sign in / Sign up

Export Citation Format

Share Document