Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin

2019 ◽  
Vol 7 (19) ◽  
pp. 12201-12213 ◽  
Author(s):  
Pier-Luc Champagne ◽  
David Ester ◽  
Amit Bhattacharya ◽  
Kyle Hofstetter ◽  
Carson Zellman ◽  
...  

A cyano-tetraethylene glycol functionalized amphiphilic cyclodextrin forms liquid crystalline self-assembly that shows promising ion conductivity (Li+).

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 887 ◽  
Author(s):  
Pawel W. Majewski ◽  
Manesh Gopinadhan ◽  
Chinedum O. Osuji

The transport properties of block copolymer-derived polymer electrolyte membranes (PEMs) are sensitive to microstructural disorder originating in the randomly oriented microdomains produced during uncontrolled self-assembly by microphase separation. This microstructural disorder can negatively impact performance due to the presence of conductivity-impeding grain boundaries and the resulting tortuosity of transport pathways. We use magnetic fields to control the orientational order of Li-doped lamellar polyethylene oxide (PEO) microdomains in a liquid crystalline diblock copolymer over large length scales (>3 mm). Microdomain alignment results in an increase in the conductivity of the membrane, but the improvement relative to non-aligned samples is modest, and limited to roughly 50% in the best cases. This limited increase is in stark contrast to the order of magnitude improvement observed for magnetically aligned cylindrical microdomains of PEO. Further, the temperature dependence of the conductivity of lamellar microdomains is seemingly insensitive to the order-disorder phase transition, again in marked contrast to the behavior of cylinder-forming materials. The data are confronted with theoretical predictions of the microstructural model developed by Sax and Ottino. The disparity between the conductivity enhancements obtained by domain alignment of cylindrical and lamellar systems is rationalized in terms of the comparative ease of percolation due to the intersection of randomly oriented lamellar domains (2D sheets) versus the quasi-1D cylindrical domains. These results have important implications for the development of methods to maximize PEM conductivity in electrochemical devices, including batteries.


2003 ◽  
Vol 771 ◽  
Author(s):  
Pavel I. Lazarev ◽  
Michael V. Paukshto ◽  
Elena N. Sidorenko

AbstractWe report a new method of Thin Crystal Film deposition. In the present paper we describe the method of crystallization, structure, and optical properties of Bisbenzimidazo[2,1-a:1',2',b']anthra[2,1,9-def:6,5,10-d'e'f']-diisoquinoline-6,9-dion (mixture with cis-isomer) (abbreviated DBI PTCA) sulfonation product. The Thin Crystal Film has a thickness of 200-1000 nm, with anisotropic optical properties such as refraction and absorption indices. X-ray diffraction data evidences a lyotropic liquid crystalline state in liquid phase and crystalline state in solid film. Anisotropic optical properties of the film make it useful in optical devices, e.g. liquid crystal displays.


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


2020 ◽  
Vol 21 (14) ◽  
pp. 5116
Author(s):  
Marco Mendozza ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV–vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.


2021 ◽  
Author(s):  
Wei Wen ◽  
Wangqi Ouyang ◽  
Song Guan ◽  
Aihua Chen

A facile synthesis of non-spherical photoresponsive azobenzene-containing liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly (PIHSA).


2016 ◽  
Vol 284 ◽  
pp. 1-6 ◽  
Author(s):  
Takashi Teranishi ◽  
Yuki Ishii ◽  
Hidetaka Hayashi ◽  
Akira Kishimoto

2018 ◽  
Vol 22 (9) ◽  
pp. 2965-2965
Author(s):  
Mariya S. Shchelkanova ◽  
Georgi Sh. Shekhtman ◽  
Anastasia V. Kalashnova ◽  
Olga G. Reznitskikh

2009 ◽  
Vol 113 (36) ◽  
pp. 16232-16237 ◽  
Author(s):  
Shiming Zhang ◽  
Yunlong Guo ◽  
Ling Wang ◽  
Qikai Li ◽  
Kai Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document