Enhanced electrochemiluminescence of CdS quantum dots capped with mercaptopropionic acid activated by EDC for Zika virus detection

The Analyst ◽  
2021 ◽  
Author(s):  
Hui-Jun Zhang ◽  
Jin Zhu ◽  
Ning Bao ◽  
Shou-Nian Ding

The mechanism of enhanced ECL of MPA@CdS QDs by EDC activation was investigated, and a sandwich-type ECL immunosensor has been designed for Zika virus detection.

RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 85795-85801 ◽  
Author(s):  
Xiaotong Liu ◽  
Weidan Na ◽  
Zhengyi Qu ◽  
Xingguang Su

The fluorescence of CdS QDs was first quenched by hemoglobin and then restored with the increasing concentration of the lysozyme in a certain range. Therefore, a fluorescence assay for the determination of lysozyme was established.


The Analyst ◽  
2021 ◽  
Author(s):  
Nan Zhou ◽  
Xiaofan Xu ◽  
Xi Li ◽  
Wengao Yao ◽  
Xiaohang He ◽  
...  

A novel sandwich-type photoelectrochemical (PEC) aptasensor for the carcinoembryonic antigen (CEA) assay was fabricated by taking advantage of the CEA aptamer, Au/BiVO4 and CdS quantum dots (CdS QDs). In virtue...


RSC Advances ◽  
2021 ◽  
Vol 11 (14) ◽  
pp. 7961-7971
Author(s):  
N. D. Vinh ◽  
P. M. Tan ◽  
P. V. Do ◽  
S. Bharti ◽  
V. X. Hoa ◽  
...  

The role of samarium (Sm) dopant on the structural, morphological, and optical properties of CdS QDs and CdS/ZnS core/shell QDs was methodically reported.


Author(s):  
Duc-Trung Nguyen ◽  
Anis Chouat ◽  
Trong-On Do

Herein, we demonstrate that 3-mercaptopropionate capping agents on CdS quantum dots' surface could serve as proton shutters and localize protons near the active sites toward an efficient photocatalytic CO2 reduction....


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 32 ◽  
Author(s):  
Zhezhe Wang ◽  
Xuechun Xiao ◽  
Tong Zou ◽  
Yue Yang ◽  
Xinxin Xing ◽  
...  

Citric acid capped CdS quantum dots (CA-CdS QDs), a new assembled fluorescent probe for copper ions (Cu2+), was synthesized successfully by a simple hydrothermal method. In this work, the fluorescence sensor for the detection of heavy and transition metal (HTM) ions has been extensively studied in aqueous solution. The results of the present study indicate that the obtained CA-CdS QDs could detect Cu2+ with high sensitivity and selectivity. It found that the existence of Cu2+ has a significant fluorescence quenching with a large red shifted (from greenish-yellow to yellowish-orange), but not in the presence of 17 other HTM ions. As a result, Cu2S, the energy level below the CdS conduction band, could be formed at the surface of the CA-CdS QDs and leads to the quenching of fluorescence of CA-CdS QDs. Under optimal conditions, the copper ions detection range using the synthesized fluorescence sensor was 1.0 × 10‒8 M to 5.0 × 10‒5 M and the limit of detection (LOD) is 9.2 × 10‒9 M. Besides, the as-synthesized CA-CdS QDs sensor exhibited good selectivity toward Cu2+ relative to other common metal ions. Thus, the CA-CdS QDs has potential applications for detecting Cu2+ in real water samples.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1701 ◽  
Author(s):  
Ruowen Liang ◽  
Zhoujun He ◽  
Chen Zhou ◽  
Guiyang Yan ◽  
Ling Wu

In this work, CdS quantum dots (QDs) were planted on magnetically recyclable porous Fe2O3 (denoted as F450) to obtain CdS QDs/porous Fe2O3 hybrids (denoted as X–CdS/F450, in which X is the immersion times of CdS QDs). Porous Fe2O3 was first obtained by pyrolysis from an iron-containing metal–organic framework by a two-step calcination method. Next, CdS QDs (of average size 3.0 nm) were uniformly and closely attached to the porous F450 via a sequential chemical-bath deposition strategy. As expected, the X–CdS/F450 hybrids serve as high-performance photocatalysts for the degradation of bisphenol A, a typical endocrine-disrupting chemical. Almost ∼100% of the bisphenol A was degraded over 5-CdS/F450 after visible light irradiation for 30 min (λ ≥ 420 nm). In comparison, the degradation efficiency of pure F450 powder is 59.2%. The high performance of 5-CdS/F450 may be ascribable to the fast electron transport of porous F450, the intense visible-light absorption of the CdS QDs and the matched energy levels between CdS and F450. More significantly, through the photocatalytic degradation reaction, the X–CdS/F450 hybrids can easily be recovered magnetically and reused in subsequent cycles, indicating their stability and recyclability.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1046 ◽  
Author(s):  
Zhilin Ji ◽  
Hongwei Wang ◽  
Xilin She

Heterojunction engineering has shown great potential in the field of photocatalysis to deal with environmental pollutants. The design and synthesis of heterojunction photocatalysts with high efficiency and stability still face great challenges. In this work, a novel CdS quantum dots (QDs) decorated 3D Bi2O2CO3 hierarchical nanoflower heterojunction photocatalyst (Bi2O2CO3/CdS QDs) was synthesized to investigate the photocatalytic Rhodamine B (RhB) degradation performance. CdS QDs were evenly distributed on the surface of the Bi2O2CO3 nanoflower. Bi2O2CO3/CdS QDs showed significantly enhanced photocatalytic RhB degradation performance compared with pristine Bi2O2CO3 and CdS QDs. The enhanced photocatalytic performance was attributed to the synergistic effect of hierarchical structure and heterojunction, which greatly increased the active sites of the reaction and the photogenerated carriers transfer.


2019 ◽  
Vol 7 (2) ◽  
pp. 806-815 ◽  
Author(s):  
Dong Cai ◽  
Lili Wang ◽  
La Li ◽  
Yupu Zhang ◽  
Junzhi Li ◽  
...  

Self-assembled CdS-QDs in carbon nanotubes are highly efficient cathode materials for lithium–sulfur batteries with improved rate performance and cycle life. The configuration suppresses polysulfide shuttling and enhances redox kinetics.


2021 ◽  
Author(s):  
Rahman Hallaj ◽  
Zahra Hosseinchi

Abstract This work focuses on the synthesis of novel modified core-shell CdTe/CdS quantum dots (QDs) and develops as a fluorescence sensor for glucose determination. The (E)-2,2'-(4,4'-dioxo-2,2'-dithioxo-2H,2'H-[5,5'-bithiazolylidene]-3,3'(4H,4'H)-diyl)bis(3- mercaptopropanoic acid) (DTM) as a new derivative of thiazolidine was synthesized and characterized and used to surface-modification of CdTe/CdS QDs. DTM-capped CdTe/CdS QDs used to immobilization of glucose oxidase (GOD). The intensity fluorescence emission of the CdSe/CdS-DTM/GOD is highly sensitive to the concentration of H2O2 as a byproduct of the catalytic oxidation of glucose. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 10 nM − 0.32 µM under optimized experimental conditions. The limit of detection of this system was found to be 4.3 nM. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, and good sensitivity.


Sign in / Sign up

Export Citation Format

Share Document