scholarly journals A simple self-adjuvanting biomimetic nanovaccine self-assembled with the conjugate of phospholipids and nucleotides can induce a strong cancer immunotherapeutic effect

2021 ◽  
Vol 9 (1) ◽  
pp. 84-92
Author(s):  
Dan Liu ◽  
Jiale Liu ◽  
Bing Ma ◽  
Bo Deng ◽  
Xigang Leng ◽  
...  

The biomimetic nanovaccines not only promoted antigens endocytosis into dendritic cells via receptor-mediated pathways but also induced antigens cross-presentation eliciting CD8+ T-cell responses. CPG-ODN as an adjuvant further enhanced the anti-tumor immune responses.

2020 ◽  
Vol 8 (2) ◽  
pp. e000691 ◽  
Author(s):  
Kelly-Anne Masterman ◽  
Oscar L Haigh ◽  
Kirsteen M Tullett ◽  
Ingrid M Leal-Rojas ◽  
Carina Walpole ◽  
...  

BackgroundDendritic cells (DCs) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T-cell-mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DCs, the human cDC1 equivalent. CD141+ DCs exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 (New York esophageal squamous cell carcinoma 1), to human CD141+ DCs. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1-specific naïve and memory CD8+ T cells was examined and compared with a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DCs.MethodsHuman anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1-epitope-specific CD8+ T cells and reactivity of T cell responses in patients with melanoma were assessed by interferon γ (IFNγ) production following incubation of CD141+ DCs and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naïve NY-ESO-1-specific CD8+ T cells were used to investigate naïve T cell priming. T cell effector function was measured by expression of IFNγ, MIP-1β, tumor necrosis factor and CD107a and by lysis of target tumor cells.ResultsCLEC9A-NY-ESO-1 antibodies (Abs) were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DCs for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in patients with melanoma. Moreover, CLEC9A-NY-ESO-1 induced priming of naïve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro.ConclusionsThese data advocate human CLEC9A-NY-ESO-1 Ab as an attractive strategy for specific targeting of CD141+ DCs to enhance tumor immunogenicity in NY-ESO-1-expressing malignancies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 373-373
Author(s):  
Else Marit Inderberg Suso ◽  
Anne-Marie Rasmussen ◽  
Steinar Aamdal ◽  
Svein Dueland ◽  
Gustav Gaudernack ◽  
...  

Abstract Abstract 373 Two cancer patients were vaccinated with dendritic cells (DC) loaded with telomerase (hTERT) mRNA to investigate the safety, tolerability and immunological response to vaccination prior to the start of a new phase I/II clinical trial. Following written informed consent one primary lung adenocarcinoma with metastasis and one patient with a relapsed pancreatic ductal type of adenocarcinoma, were treated with autologus monocyte-derived DC transfected with mRNA encoding hTERT. The patients first received four weekly injections administered intradermally followed by monthly booster injections. Peripheral blood mononuclear cells (PBMC) at each vaccination time point were tested in vitro with transfected DC and a panel of 24 overlapping hTERT peptides. In addition, hTERT-specific CD8+ T cells were monitored by pentamer staining. The treatment was well tolerated with minor side effects. Immune responses against telomerase-transfected DC and some of the overlapping hTERT peptides were detected in both patients. We also detected hTERT-specific CD8+ T cells in both patients by pentamer staining in post-vaccination samples. The lung cancer patients obtained a stable disease that lasted 18 months while the patient with pancreas cancer who started the DC vaccination in July 2007 following palliative chemotherapy, still is in stable disease by continuously boost vaccination. T-cell responses against telomerase epitopes have also been identified in both non-vaccinated cancer patients and cancer patients previously vaccinated with telomerase peptide. Since patients with these findings often show extraordinary clinical courses of their disease we hypothesize that it exists a high degree of immunogenicity and HLA promiscuity for some telomerase epitopes. In this study we have shown that vaccination with hTERT-mRNA transfected DC is safe and able to induce robust immune responses to several telomerase T-cell epitopes both in CD4+ and CD8+ T cells. This opens up the possibility for a broad clinical application of mRNA hTERT DC vaccines. Furthermore, responding T cells identified in these patients are strong candidates for T-cell receptor cloning and the receptors identified can thereafter be transferred into T cells creating the next generation of immuno-gene therapy with retargeted T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3713-3722 ◽  
Author(s):  
Juliette Mouriès ◽  
Gabriel Moron ◽  
Géraldine Schlecht ◽  
Nicolas Escriou ◽  
Gilles Dadaglio ◽  
...  

Abstract Cross-presentation is a crucial mechanism in tumoral and microbial immunity because it allows internalized cell associated or exogenous antigens (Ags) to be delivered into the major histocompatibility complex I pathway. This pathway is important for the development of CD8+ T-cell responses and for the induction of tolerance. In mice, cross-presentation is considered to be a unique property of CD8α+ conventional dendritic cells (DCs). Here we show that splenic plasmacytoid DCs (pDCs) efficiently capture exogenous Ags in vivo but are not able to cross-present these Ags at steady state. However, in vitro and in vivo stimulation by Toll-like receptor-7, or -9 or viruses licenses pDCs to cross-present soluble or particulate Ags by a transporter associated with antigen processing-dependent mechanism. Induction of cross-presentation confers to pDCs the ability to generate efficient effector CD8+ T-cell responses against exogenous Ags in vivo, showing that pDCs may play a crucial role in induction of adaptive immune responses against pathogens that do not infect tissues of hemopoietic origin. This study provides the first evidence for an in vivo role of splenic pDCs in Ag cross-presentation and T-cell cross-priming and suggests that pDCs may constitute an attractive target to boost the efficacy of vaccines based on cytotoxic T lymphocyte induction.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A648-A648
Author(s):  
Kelly-Anne Masterman ◽  
Oscar Haigh ◽  
Kirsteen Tullett ◽  
Ingrid Leal-Rojas ◽  
Carina Walpole ◽  
...  

BackgroundDendritic cells (DC) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T cell mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DC, the human cDC1 equivalent. CD141+ DC exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 to human CD141+ DC. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1 specific naïve and memory CD8+ T cells was examined and compared to a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DC.MethodsHuman anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1- epitope specific CD8+ T cells and reactivity of T cell responses in melanoma patients was assessed by IFNγ production following incubation of CD141+ DC and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naïve NY-ESO-1-specific CD8+ T cells were used to investigate naïve T cell priming. T cell effector function was measured by expression of IFNγ, MIP-1β, TNF and CD107a and by lysis of target tumor cells.ResultsCLEC9A-NY-ESO-1 Ab were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DC for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in melanoma patients. Moreover, CLEC9A-NY-ESO-1 induced priming of naïve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro.ConclusionsThese data advocate human CLEC9A-NY-ESO-1 antibody as an attractive strategy for specific targeting of CD141+ DC to enhance tumour immunogenicity in NY-ESO-1-expressing malignancies.Ethics ApprovalWritten informed consent was obtained for human sample acquisition in line with standards established by the Declaration of Helsinki. Study approval was granted by the Mater Human Research Ethics Committee (HREC13/MHS/83 and HREC13/MHS/86) and The U.S. Army Medical Research and Materiel Command (USAMRMC) Office of Research Protections, Human Research Protection Office (HRPO; A-18738.1, A-18738.2, A-18738.3). All animal experiments were approved by the University of Queensland Animal Ethics Committee and conducted in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes in addition to the laws of the United States and regulations of the Department of Agriculture.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ellen Van Gulck ◽  
Nathalie Cools ◽  
Derek Atkinson ◽  
Lotte Bracke ◽  
Katleen Vereecken ◽  
...  

A variety of immune-based therapies has been developed in order to boost or induce protective CD8+T cell responses in order to control HIV replication. Since dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique capability to stimulate naïve T cells into effector T cells, their use for the induction of HIV-specific immune responses has been studied intensively. In the present study we investigated whether modulation of the activation state of DCs electroporated with consensus codon-optimized HxB2gagmRNA enhances their capacity to induce HIVgag-specific T cell responses. To this end, mature DCs were (i) co-electroporated with mRNA encoding interleukin (IL)-12p70 mRNA, or (ii) activated with a cytokine cocktail consisting of R848 and interferon (IFN)-γ. Our results confirm the ability of HxB2gag-expressing DCs to expand functional HIV-specific CD8+T cells. However, although most of the patients had detectablegag-specific CD8+T cell responses, no significant differences in the level of expansion of functional CD8+T cells could be demonstrated when comparing conventional or immune-modulated DCs expressing IL-12p70. This result which goes against expectation may lead to a re-evaluation of the need for IL-12 expression by DCs in order to improve T-cell responses in HIV-1-infected individuals.


2021 ◽  
Author(s):  
Javeed A. Shah ◽  
Alex J. Warr ◽  
Andrew D. Graustein ◽  
Aparajita Saha ◽  
Sarah J. Dunstan ◽  
...  

AbstractRationaleThe major human genes regulating M. tuberculosis (Mtb)-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling.ObjectivesTo determine whether common human genetic variation in CNBP, REL and BHLHE40 is associated with IL-12 and IL-10 expression, adaptive immune responses to mycobacteria, and susceptibility to TB.Methods and Main MeasurementsWe characterized the association between common variants in CNBP, REL, and BHLHE40 and innate immune responses in dendritic cells and monocyte-derived macrophages (MDM), BCG-specific T cell responses, and susceptibility to pediatric and adult TB.ResultsSNP BHLHE40 rs4496464 was associated with increased BHLHE40 expression in MDMs and increased IL-10 from both peripheral blood dendritic cells and MDMs after LPS and TB whole cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and CNBP rs11709852 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618, in linkage disequilibrium with rs842634, was associated with increased risk for TB meningitis.ConclusionsGenetic variation in CNBP, REL, and BHLHE40 is associated with IL-12 and IL-10 cytokine response and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 98 ◽  
Author(s):  
Derek Theisen ◽  
Kenneth Murphy

The cDC1 subset of classical dendritic cells is specialized for priming CD8 T cell responses through the process of cross-presentation. The molecular mechanisms of cross-presentation remain incompletely understood because of limited biochemical analysis of rare cDC1 cells, difficulty in their genetic manipulation, and reliance onin vitrosystems based on monocyte- and bone-marrow-derived dendritic cells. This review will discuss cross-presentation from the perspective of studies with monocyte- or bone-marrow-derived dendritic cells while highlighting the need for future work examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform to combine antigen processing for class I and class II MHC presentation to allow the integration of “help” from CD4 T cells during priming of CD8 T cell responses.


Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 724-735 ◽  
Author(s):  
Tomomi Toubai ◽  
Chelsea Malter ◽  
Isao Tawara ◽  
Chen Liu ◽  
Evelyn Nieves ◽  
...  

Abstract Little is known about the role of active immunization in suppressing undesirable immune responses. Because CD8α+ dendritic cells (DCs) suppress certain immune responses, we tested the hypothesis that immunization of donors with host-derived CD8α+ DCs will reduce host-specific donor T-cell responses. BALB/c T cells from the animals that were immunized with B6 CD8α+ DCs demonstrated, in vitro and in vivo, significantly reduced proliferation and secretion of inflammatory cytokines but showed enhanced secretion of interleukin-10 (IL-10). The responses against third-party and model antigens were preserved demonstrating antigen specificity. The in vivo relevance was further demonstrated by the reduction on graft-versus-host disease (GVHD) in both a major histocompatibility complex–mismatched clinically relevant BALB/c → B6 model and major histocompatibility complex–matched, minor-mismatched C3H.SW → B6 model of GVHD. Immunization of the donors that were deficient in IL-10 (IL-10−/−) or with CD8α+ DCs from B6 class II (class II−/−) failed to reduce T-cell responses, demonstrating (1) a critical role for secretion of IL-10 by donor T cells and (2) a direct contact between the T cells and the CD8α+ DCs. Together, these data may represent a novel strategy for reducing GVHD and suggest a broad counterintuitive role for vaccination strategies in mitigating undesirable immune responses in an antigen-specific manner.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1685-1697 ◽  
Author(s):  
Eynav Klechevsky ◽  
Anne-Laure Flamar ◽  
Yanying Cao ◽  
Jean-Philippe Blanck ◽  
Maochang Liu ◽  
...  

Abstract We evaluated human CD8+ T-cell responses generated by targeting antigens to dendritic cells (DCs) through various lectin receptors. We found the immunoreceptor tyrosine-based inhibitory motif-containing DC immunoreceptor (DCIR) to mediate potent cross-presentation. A single exposure to a low dose of anti-DCIR–antigen conjugate initiated antigen-specific CD8+ T-cell immunity by all human DC subsets including ex vivo–generated DCs, skin-isolated Langerhans cells, and blood myeloid DCs and plasmacytoid DCs. The delivery of influenza matrix protein (FluMP) through DCIR resulted in expansion of FluMP-specific memory CD8+ T cells. Enhanced specific CD8+ T-cell responses were observed when an antigen was delivered to the DCs via DCIR, compared with those induced by a free antigen, or antigen conjugated to a control monoclonal antibody or delivered via DC-SIGN, another lectin receptor. DCIR targeting also induced primary CD8+ T-cell responses against self (MART-1) and viral (HIV gag) antigens. Addition of Toll-like receptor (TLR) 7/8 agonist enhanced DCIR-mediated cross-presentation as well as cross-priming, particularly when combined with a CD40 signal. TLR7/8 activation was associated with increased expansion of the primed CD8+ T cells, high production of interferon-γ and tumor necrosis factor-α, and reduced levels of type 2–associated cytokines. Thus, antigen targeting via the human DCIR receptor allows activation of specific CD8+ T-cell immunity.


Sign in / Sign up

Export Citation Format

Share Document