Wrinkle and Near Resonance Effect on the Vibrational and Electronic properties in Compressed Monolayer MoSe2

Author(s):  
Yan Liu ◽  
Qiang Zhou ◽  
Yalan Yan ◽  
Liang Li ◽  
Jian Zhu ◽  
...  

Pressure has been considered as an effective technique to modulate the structural, electronic, and optical properties of transition metal dichalcogenides (TMDs) materials. Here, by performing in situ high pressure Raman,...

2021 ◽  
Vol 23 (10) ◽  
pp. 6298-6308
Author(s):  
Chan Gao ◽  
Xiaoyong Yang ◽  
Ming Jiang ◽  
Lixin Chen ◽  
Zhiwen Chen ◽  
...  

The combination of defect engineering and strain engineering for the modulation of the mechanical, electronic and optical properties of monolayer transition metal dichalcogenides (TMDs).


2018 ◽  
Vol 10 (47) ◽  
pp. 40773-40780 ◽  
Author(s):  
Anjli Kumar ◽  
Amritanand Sebastian ◽  
Saptarshi Das ◽  
Emilie Ringe

In the present work, we have studied intercalated Transition Metal Dichalcogenides (TMDC) MTiS2 compounds (M = Cr, Mn, Fe) by Density Functional Theory (DFT) with Generalized Gradient Approximation (GGA). We have computed the structural and electronic properties by using first principle method in QUANTUM ESPRESSO computational code with an ultra-soft pseudopotential. A guest 3d transition metal M (viz; Cr, Mn, Fe) can be easily intercalated in pure transition metal dichalcogenides compound like TiS2. In the present work, the structural optimization, electronic properties like the energy band structure, density of states (DoS), partial or projected density of states (PDoS) and total density of states (TDoS) are reported. The energy band structure of MTiS2 compound has been found overlapping energy bands in the Fermi region. We conclude that the TiS2 intercalated compound has a small band gap while the doped compound with guest 3d-atom has metallic behavior as shown form its overlapped band structure.


2020 ◽  
Vol 10 ◽  
pp. 184798042095509
Author(s):  
Ankit Kumar Verma ◽  
Federico Raffone ◽  
Giancarlo Cicero

Two-dimensional transition metal dichalcogenides have gained great attention because of their peculiar physical properties that make them interesting for a wide range of applications. Lately, alloying between different transition metal dichalcogenides has been proposed as an approach to control two-dimensional phase stability and to obtain compounds with tailored characteristics. In this theoretical study, we predict the phase diagram and the electronic properties of Mo xTi1− xS2 at varying stoichiometry and show how the material is metallic, when titanium is the predominant species, while it behaves as a p-doped semiconductor, when approaching pure MoS2 composition. Correspondingly, the thermodynamically most stable phase switches from the tetragonal to the hexagonal one. Further, we present an example which shows how the proposed alloys can be used to obtain new vertical two-dimensional heterostructures achieving effective electron/hole separation.


2020 ◽  
Vol 22 (25) ◽  
pp. 14088-14098
Author(s):  
Amine Slassi ◽  
David Cornil ◽  
Jérôme Cornil

The rise of van der Waals hetero-structures based on transition metal dichalcogenides (TMDs) opens the door to a new generation of optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document