Oral administration of Lactobacillus fermentum post-weaning improves the lipid profile and autonomic dysfunction in rat offspring exposed to maternal dyslipidemia

2020 ◽  
Vol 11 (6) ◽  
pp. 5581-5594 ◽  
Author(s):  
Yohanna de Oliveira ◽  
Raissa Georgianna Silva Cavalcante ◽  
Marinaldo Pacífico Cavalcanti Neto ◽  
Marciane Magnani ◽  
Valdir de Andrade Braga ◽  
...  

Maternal dyslipidemia alters the gut microbiota composition and contributes to the development of arterial hypertension (AH) in offspring.


2019 ◽  
Vol 366 (13) ◽  
Author(s):  
Saisai Feng ◽  
Yang Liu ◽  
Yanyang Huang ◽  
Jianxin Zhao ◽  
Hao Zhang ◽  
...  

ABSTRACT Cadmium (Cd) contamination is a serious food safety problem. Acute and chronic Cd exposure changes the gut microbiota composition and damages the gut barrier function. Akkermansia muciniphila (AKK), a promising candidate for the next-generation probiotics, has been reported to protect the mucus layer in the colon and significantly decrease the effects of Cd exposure in mice. Thus, the mice model was adopted to investigate the influence of oral administration of AKK on the toxic distribution and changes of gut microbiota composition caused by acute and chronic Cd exposure. In both acute and chronic Cd exposure experiments, 40 mice were divided into four groups (normal group, AKK group, Cd group and Cd plus AKK group). The Cd contents in feces and tissues were measured by a flame or graphite furnace atomic absorption spectrophotometer and gut microbiota composition was determined through 16S rRNA gene sequencing. The results showed that the gavage of AKK could not reduce the accumulation of Cd in the liver and kidney. The oral administration of AKK showed a certain influence on the gut microbiota composition of acute Cd exposure mice and limited influence on that of chronic Cd exposure mice. These results indicate the failure of AKK, as a potential protective probiotic, to reduce Cd toxicity. However, the gavage of AKK did have an influence on the gut microbiota composition of normal mice, especially on some genera in the Clostridiales order. Besides, when considering AKK’s probiotic potential and its effects on host health and disease, we should take into consideration its influence on the gut microbiota composition and micro-environment.



2016 ◽  
Vol 60 (5) ◽  
pp. 1150-1160 ◽  
Author(s):  
Chrysoula Matziouridou ◽  
Nittaya Marungruang ◽  
Thao Duy Nguyen ◽  
Margareta Nyman ◽  
Frida Fåk


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Tamotsu Kato ◽  
Kyoko Yamazaki ◽  
Mayuka Nakajima ◽  
Yasuhiro Date ◽  
Jun Kikuchi ◽  
...  

ABSTRACTPeriodontal disease induced by periodontopathic bacteria likePorphyromonas gingivalisis demonstrated to increase the risk of metabolic, inflammatory, and autoimmune disorders. Although precise mechanisms for this connection have not been elucidated, we have proposed mechanisms by which orally administered periodontopathic bacteria might induce changes in gut microbiota composition, barrier function, and immune system, resulting in an increased risk of diseases characterized by low-grade systemic inflammation. Accumulating evidence suggests a profound effect of altered gut metabolite profiles on overall host health. Therefore, it is possible thatP. gingivaliscan affect these metabolites. To test this, C57BL/6 mice were administered withP. gingivalisW83 orally twice a week for 5 weeks and compared with sham-inoculated mice. The gut microbial communities were analyzed by pyrosequencing the 16S rRNA genes. Inferred metagenomic analysis was used to determine the relative abundance of KEGG pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analyses. Oral administration ofP. gingivalisinduced a change in gut microbiota composition. The distributions of metabolic pathways differed between the two groups, including those related to amino acid metabolism and, in particular, the genes for phenylalanine, tyrosine, and tryptophan biosynthesis. Also, alanine, glutamine, histidine, tyrosine, and phenylalanine were significantly increased in the serum ofP. gingivalis-administered mice. In addition to altering immune modulation and gut barrier function, oral administration ofP. gingivalisaffects the host’s metabolic profile. This supports our hypothesis regarding a gut-mediated systemic pathology resulting from periodontal disease.IMPORTANCEIncreasing evidence suggest that alterations of the gut microbiome underlie metabolic disease pathology by modulating gut metabolite profiles. We have shown that orally administeredPorphyromonas gingivalis, a representative periodontopathic bacterium, alters the gut microbiome; that may be a novel mechanism by which periodontitis increases the risk of various diseases. Given the association between periodontal disease and metabolic diseases, it is possible thatP. gingivaliscan affect the metabolites. Metabolite profiling analysis demonstrated that several amino acids related to a risk of developing diabetes and obesity were elevated inP. gingivalis-administered mice. Our results revealed that the increased risk of various diseases byP. gingivalismight be mediated at least in part by alteration of metabolic profiles. The findings should add new insights into potential links between periodontal disease and systemic disease for investigators in periodontal disease and also for investigators in the field of other diseases, such as metabolic diseases.



2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yixian Quah ◽  
Na-Hye Park ◽  
Eon-Bee Lee ◽  
Ki-Ja Lee ◽  
Jireh Chan Yi-Le ◽  
...  

Abstract Background Trifolium pratense (red clover) ethanolic extract (TPEE) has been used as a popular over-the-counter remedy for the management of menopausal symptoms. Prolonged consumption of herbal extract has been shown to regulate the composition of gut microbiota. This study was designed to elucidate the influence of TPEE on the gut microbiota composition in the ovariectomized (OVX) rats. Methods OVX rats were treated with TPEE at 125, 250, 500 mg/kg/day, or controls (pomegranate extract, 500 mg/kg/day; estradiol, 25 μg/kg/day) for 12 weeks. Gut microbiota analysis was conducted by extracting the microbial DNA from fecal samples and microbiome taxonomic profiling was carried out by using next-generation sequencing. The levels of serum biomarkers were analyzed using enzyme-linked immunosorbent assay (ELISA) kit. The prediction of functional biomarker of microbiota was performed using PICRUSt to investigate the potential pathways associated with gut health and serum lipid profile regulation. To study the correlation between gut microbiota composition and serum lipid levels, Spearman’s correlation coefficients were defined and analyzed. Additionally, gas chromatography–mass spectrometry analysis was conducted to uncover additional physiologically active ingredients. Results TPEE-treated OVX rats showed significant reduction in serum triglycerides (TG), total cholesterols (TCHOL), and LDL/VLDL levels but increase in HDL level. The alteration in the pathways involve in metabolism was the most common among the other KEGG categories. Particularly, TPEE also significantly reduced the relative abundance of sequences read associated with inflammatory bowel disease (IBD) and the peroxisome proliferator-activated receptor (PPAR) signalling pathway. TPEE intervention was seen to reduce the Firmicutes to Bacteroidetes (F/B) ratio in the OVX rats, denoting a reduction in microbial dysbiosis in the OVX rats. Correlation analysis at the phylum level revealed that Bacteriodetes and Proteobacteria were strongly correlated with serum TG, TCHOL and HDL levels. At the species level, Bifidobacterium pseudolongum group was seen to positively correlate with serum HDL level and negatively correlated with serum AST, ALT, LDL/VLDL, TCHOL, and TG levels. Conclusions TPEE treatment showed therapeutic benefits by improving the intestinal microbiota composition which strongly correlated with the serum lipid and cholesterol levels in the OVX rats.



2021 ◽  
Vol 49 (08) ◽  
pp. 1897-1912
Author(s):  
Jeon-Kyung Kim ◽  
Eun Kyu Lee ◽  
Chu Hyun Bae ◽  
Soo-Dong Park ◽  
Jae-Jung Shim ◽  
...  

Ginsenosides of orally administered red ginseng (RG) extracts are metabolized and absorbed into blood. Here, we examined the pharmacokinetic profiles of ginsenosides Rd and Rg3 in mice orally gavaged with RG, then investigated the correlations between these and gut microbiota composition. RG water extract (RGw), RG ethanol extract (RGe), or fermented RGe (fRGe) was orally gavaged in mice. The plasma concentrations of the ginsenosides were determined, and the gut microbiota composition was analyzed. RGe and fRGe-treated mice showed higher plasma concentration levels of ginsenoside Rd compared with RGw-treated mice; particularly, ginsenoside Rd absorbed was substantially high in fRGe-treated mice. Oral administration of RG extracts modified the gut microbiota composition; the modified gut microbiota, such as Peptococcaceae, Rikenellaceae, and Hungateiclostridiaceae, were closely correlated with the absorption of ginsenosides, such as Rd and Rg3. These results suggest that oral administration of RG extracts can modify gut microbiome, which may consequently affect the bioavailability of RG ginsenosides.



Sign in / Sign up

Export Citation Format

Share Document