scholarly journals Black bean protein concentrate ameliorates hepatic steatosis by decreasing lipogenesis and increasing fatty acid oxidation in rats fed a high fat-sucrose diet

2020 ◽  
Vol 11 (12) ◽  
pp. 10341-10350
Author(s):  
Irma Hernandez-Velazquez ◽  
Monica Sanchez-Tapia ◽  
Guillermo Ordaz-Nava ◽  
Nimbe Torres ◽  
Armando R. Tovar ◽  
...  

The black bean is a legume widely consumed in Latin America, however its consumption has decreased significantly in recent decades.

2021 ◽  
Author(s):  
Irma Hernandez-Velazquez ◽  
Monica Sanchez-Tapia ◽  
Guillermo Ordaz-Nava ◽  
Nimbe Torres ◽  
Armando R. Tovar ◽  
...  

Correction for ‘Black bean protein concentrate ameliorates hepatic steatosis by decreasing lipogenesis and increasing fatty acid oxidation in rats fed a high fat-sucrose diet’ by Irma Hernandez-Velazquez et al., Food Funct., 2020, DOI: 10.1039/d0fo02258f.


2012 ◽  
Vol 9 (1) ◽  
pp. 27 ◽  
Author(s):  
Hwan-Hee Jang ◽  
Mi-Young Park ◽  
Heon-Woong Kim ◽  
Young-Min Lee ◽  
Kyung-A Hwang ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1133 ◽  
Author(s):  
So Young Gwon ◽  
Jiyun Ahn ◽  
Chang Hwa Jung ◽  
BoKyung Moon ◽  
Tae-Youl Ha

Shikonin, a natural plant pigment, is known to have anti-obesity activity and to improve insulin sensitivity. This study aimed to examine the effect of shikonin on hepatic steatosis, focusing on the AMP-activated protein kinase (AMPK) and energy expenditure in Hepa 1-6 cells and in high-fat fed mice. Shikonin increased AMPK phosphorylation in a dose- and time-dependent manner, and inhibition of AMPK with compound C inhibited this activation. In an oleic acid-induced steatosis model in hepatocytes, shikonin suppressed oleic acid-induced lipid accumulation, increased AMPK phosphorylation, suppressed the expression of lipogenic genes, and stimulated fatty acid oxidation-related genes. Shikonin administration for four weeks decreased body weight gain and the accumulation of lipid droplets in the liver of high-fat fed mice. Furthermore, shikonin promoted energy expenditure by activating fatty acid oxidation. In addition, shikonin increased the expression of PPARγ coactivator-1α (PGC-1α), carnitine palmitoyltransferase-1 (CPT1) and other mitochondrial function-related genes. These results suggest that shikonin attenuated a high fat diet-induced nonalcoholic fatty liver disease by stimulating fatty acid oxidation and energy expenditure via AMPK activation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Zamora-López ◽  
L. G. Noriega ◽  
A. Estanes-Hernández ◽  
I. Escalona-Nández ◽  
S. Tobón-Cornejo ◽  
...  

Abstract Pomegranate seed oil (PSO) is mainly composed of punicic acid (PA), a polyunsaturated fatty acid also known as omega-5 (ω-5), a potent antioxidant associated with a variety of metabolic and cellular beneficial effects. However, the potential benefits of a nanoemulsified version of ω-5 (PSOn) have not been evaluated in a pathological liver condition. Here, we examined whether PSOn had beneficial effects on C57BL/6N mice fed a high-fat diet (HFD), specifically on hepatic steatosis. We observed that PSOn supplementation decreased body weight and body fat mass in control mice, whereas glucose intolerance, insulin resistance, energy expenditure, and hepatic steatosis were improved in both control mice and in mice fed a HFD. Interestingly, PSOn increased fatty acid oxidation in primary hepatocytes and antioxidant gene expression. Altogether, our data indicate that PSOn effectively reduces some of the HFD-derived metabolic syndrome indicators by means of an increase in fatty acid oxidation within hepatocytes.


2014 ◽  
Vol 112 (6) ◽  
pp. 868-875 ◽  
Author(s):  
Masatoshi Kondoh ◽  
Takashi Shimada ◽  
Kazutake Fukada ◽  
Mayuko Morita ◽  
Kazuhiro Katada ◽  
...  

A high-fat diet (HFD) is one of the causes of hepatic steatosis. We previously demonstrated that Enterococcus faecalis FK-23 (FK-23), a type of lactic acid bacteria, exhibits an anti-obesity effect in mice fed a HFD. In the present study, we examined the effects of FK-23 on HFD-induced hepatic steatosis. Male C57BL/6 mice were divided into four groups and given one of four treatments: standard diet (SD); standard diet supplemented with FK-23 (SD+FK); HFD; or HFD supplemented with FK-23 (HFD+FK). For the administration of FK-23, the drinking water was supplemented with FK-23 at a concentration of 2 % (w/w). After 11 weeks, histological findings revealed hepatic steatosis in the liver of HFD-fed mice; however, this effect was attenuated by the administration of FK-23. The expression levels of genes involved in fatty acid oxidation in the liver tissue were significantly reduced in the HFD group compared with the SD group, but FK-23 supplementation tended to up-regulate the expression levels of these genes. Our findings show that the inhibitory effect of FK-23 against hepatic steatosis in HFD-fed mice can be explained by the prevention of fat accumulation in the liver through the modulation of the activities of genes involved in hepatic fatty acid oxidation.


Author(s):  
Yo Na Kim ◽  
Jae Hoon Shin ◽  
Dong Soo Kyeong ◽  
Soo Young Cho ◽  
Mi-Young Kim ◽  
...  

AbstractThe AHNAK nucleoprotein has been determined to exert an anti-obesity effect in adipose tissue and further inhibit adipogenic differentiation. In this study, we examined the role of AHNAK in regulating hepatic lipid metabolism to prevent diet-induced fatty liver. Ahnak KO mice have reportedly exhibited reduced fat accumulation in the liver and decreased serum triglyceride (TG) levels when provided with either a normal chow diet or a high-fat diet (HFD). Gene expression profiling was used to identify novel factors that could be modulated by genetic manipulation of the Ahnak gene. The results revealed that fibroblast growth factor 21 (FGF21) was markedly increased in the livers of Ahnak KO mice compared with WT mice fed a HFD. Ahnak knockdown in hepatocytes reportedly prevented excessive lipid accumulation induced by palmitate treatment and was associated with increased secretion of FGF21 and the expression of genes involved in fatty acid oxidation, which are primarily downstream of PPARα. These results indicate that pronounced obesity and hepatic steatosis are attenuated in HFD-fed Ahnak KO mice. This may be attributed, in part, to the induction of FGF21 and regulation of lipid metabolism, which are considered to be involved in increased fatty acid oxidation and reduced lipogenesis in the liver. These findings suggest that targeting AHNAK may have beneficial implications in preventing or treating hepatic steatosis.


2015 ◽  
Vol 185 (5) ◽  
pp. 1396-1408 ◽  
Author(s):  
Qian Gao ◽  
Yuzhi Jia ◽  
Gongshe Yang ◽  
Xiaohong Zhang ◽  
Prajwal C. Boddu ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Dan Shao ◽  
Nathan Roe ◽  
Loreta D Tomasi ◽  
Alyssa N Braun ◽  
Ana Mattos ◽  
...  

In the obese and diabetic heart, an imbalance between fatty acid uptake and fatty acid oxidation (FAO) promotes the development of cardiac lipotoxicity. We previously showed that cardiac specific deletion of acetyl CoA carboxylase 2 (ACC2) was effective in increasing myocardial FAO while maintaining normal cardiac function and energetics. In this study, we tested the hypothesis that ACC2 deletion in an adult heart would prevent the cardiac lipotoxic phenotype in a mouse model of diet-induced obesity. ACC2 flox/flox (CON) and ACC2 flox/flox-MerCreMer+ (iKO) after tamoxifen injection were subjected to a high fat diet (HFD) for 24 weeks. HFD induced similar body weight gain and glucose intolerance in CON and iKO. In isolated Langendorff-perfused heart experiments, HFD feeding increased FAO 1.6-fold in CON mice which was increased to 2.5-fold in iKO mice compared with CON on chow diet. Fractional shortening was significantly decreased in CON-HFD (32.8±2.8% vs. 39.2±3.2%, p< 0.05, n=5-6), but preserved in iKO-HFD mice (42.8±2.3%, vs. 38.5±1.4%, n=6), compared to respective chow fed controls. Diastolic function, assessed by E’/A’ ratio using tissue Doppler imaging, was significantly decreased in CON-HFD mice (1.11±0.08 vs. 0.91±0.09, p<0.05 n=5-6), while no difference was observed in iKO-HFD compared to iKO-chow (1.10±0.03 vs. 1.09±0.04, n=6). Heart weight /Tibia length ratio was significantly higher in CON than iKO mice after HFD feeding (7.19±0.22 vs. 6.47±0.28, p<0.05, n=6). Furthermore, HFD induced mitochondria super complex II, III and V instability, which was attenuated in iKO-HFD mice. These data indicate that elevated myocardial FAO per se does not cause the development of cardiac dysfunction in obese animals. In fact, enhancing FAO via ACC2 deletion prevents HFD induced cardiac dysfunction and attenuates pathological hypertrophy. These effects may be mediated, in part, by maintenance of mitochondrial integrity. Taken together, our findings suggest that promoting cardiac FAO is an effective strategy to resist the development of cardiac lipotoxicity during diet-induced obesity.


Sign in / Sign up

Export Citation Format

Share Document