scholarly journals Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications

2020 ◽  
Vol 1 (7) ◽  
pp. 2163-2181 ◽  
Author(s):  
Xinxiao Zhou ◽  
Bin Liu ◽  
Yun Chen ◽  
Lei Guo ◽  
Gang Wei

Carbon-nanofiber-based three-dimensional nanomaterials exhibit promising energy and environmental science applications.

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 246
Author(s):  
Keming Wan ◽  
Yalin Li ◽  
Yan Wang ◽  
Gang Wei

Two-dimensional (2D) nanomaterials have attracted increased interest and exhibited extended applications from nanotechnology to materials science, biomedicine, tissue engineering, as well as energy storage and environmental science. With the development of the synthesis and fabrication of 2D materials, a new family of 2D materials, metal carbides (MCs), revealed promising applications in recent years, and have been utilized for the fabrication of various functional 2D and three-dimensional (3D) nanomaterials for energy and environmental applications, ascribing to the unique physical and chemical properties of MCs. In this review, we present recent advance in the synthesis, fabrication, and applications of 2D and 3D MC-based nanomaterials. For this aim, we first summarize typical synthesis methods of MCs, and then demonstrate the progress on the fabrication of 2D and 3D MC-based nanomaterials. To the end, the applications of MC-based 2D and 3D materials for chemical batteries, supercapacitors, water splitting, photodegradation, removal of heavy metals, and electromagnetic shielding are introduced and discussed. This work provides useful information on the preparation, hybridization, structural tailoring, and applications of MC-based materials, and is expected to inspire the design and fabrication of novel and functional MXene materials with improved performance.


2020 ◽  
Vol 1 (7) ◽  
pp. 2543-2543
Author(s):  
Xinxiao Zhou ◽  
Bin Liu ◽  
Yun Chen ◽  
Lei Guo ◽  
Gang Wei

Correction for ‘Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications’ by Xinxiao Zhou et al., Mater. Adv., 2020, DOI: 10.1039/d0ma00492h.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 13898-13905
Author(s):  
Chuan Cai ◽  
He Gong ◽  
Weiping Li ◽  
Feng Gao ◽  
Qiushi Jiang ◽  
...  

A three-dimensional electrospun carbon nanofiber network was used to measure press strains with high sensitivity.


2012 ◽  
Vol 528 ◽  
pp. 14-17
Author(s):  
Peng Zhan Sun ◽  
Hong Wei Zhu

Carbon nanotube (CNT) sponges are three-dimensional frameworks of interconnected CNTs with great potentials in composite and environmental applications. CNT sponges with lateral sizes of centimeters have been prepared through chemical vapor deposition (CVD), and their compressive mechanical properties are studied. To gain deep insight on the microstructure and how CNTs are connected within the sponges, we propose a simple theoretical model to understand the arrangement as well as the interconnection of CNTs. The mechanical properties of CNT sponges can be well explained and predicted using this model.


Author(s):  
Koji Takahashi ◽  
Yohei Ito ◽  
Tatsuya Ikuta

A carbon nanofiber material, consisting of bottomless graphene cups inside on each other in a line, like a set of soft-drink cups, has been discovered to have the potential to conduct heat ballistically over a long distance. Its longitudinal heat transport ability had been forecast to be extremely poor due to the weak van der Waals force operating between the graphene cups, but our measurements using nano thermal sensor showed that its thermal conductivity is much higher than that along the c-axis of bulk graphite. This unexpected result can be understood by its similarity to a one-dimensional (1D) harmonic-chain where no phonon is scattered even for an infinite length. The current graphene-based nanofiber resembles this type of “superconductive” chain due to the huge difference between the stiff covalent bonding in each cup and the weak inter-cup interaction. A non-equilibrium molecular dynamics simulation is conducted to explore the phonon transport in this fiber. The simulation results show that the thermal conductivity varies with the fiber length in a power law fashion with an exponent as large as 0.7. The calculated phonon density of states and atomic motions indicate that a low-frequency quasi-1D oscillation occurs there. Our investigations show that treating the current nanofiber as a 1D chain with three-dimensional oscillations explains well why this material has the most effective ballistic phonon transport ever observed.


2020 ◽  
Vol 12 (5) ◽  
pp. 693-700 ◽  
Author(s):  
Hao Cheng ◽  
Zhengyuan Zhou ◽  
Danfeng Qin ◽  
Wenyi Huang ◽  
Jun Feng ◽  
...  

In this study, a three-dimensional carbon nanofiber network was formed by first electrospinning a mixed solution of montmorillonite (MMT) and polyacrylonitrile (PAN), and then carbonizing the composite nanofiber and etching it with hydrofluoric acid. The form and morphology of the nanofibers were analysized by scanning electron microscopy (SEM), Raman microspectroscopy (Raman), and X-ray photoelectron spectroscopy (XPS). The sensor fabricated on three-dimensional carbon nanofiber showed a good linear response (y = 0.076x – 0.110, R2 = 0.999, and y = 0.193x – 1.770, R2 = 0.998), high stability and selectivity, and a low detection limit (0.4 μg · L–1) for Cu(II) as measured using differential pulse voltammetry under the optimal conditions, and the method mentioned above was also used to analyze Cu(II) in real tap water samples, which had good recoveries.


Sign in / Sign up

Export Citation Format

Share Document