scholarly journals Recent Advance in the Fabrication of 2D and 3D Metal Carbides-Based Nanomaterials for Energy and Environmental Applications

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 246
Author(s):  
Keming Wan ◽  
Yalin Li ◽  
Yan Wang ◽  
Gang Wei

Two-dimensional (2D) nanomaterials have attracted increased interest and exhibited extended applications from nanotechnology to materials science, biomedicine, tissue engineering, as well as energy storage and environmental science. With the development of the synthesis and fabrication of 2D materials, a new family of 2D materials, metal carbides (MCs), revealed promising applications in recent years, and have been utilized for the fabrication of various functional 2D and three-dimensional (3D) nanomaterials for energy and environmental applications, ascribing to the unique physical and chemical properties of MCs. In this review, we present recent advance in the synthesis, fabrication, and applications of 2D and 3D MC-based nanomaterials. For this aim, we first summarize typical synthesis methods of MCs, and then demonstrate the progress on the fabrication of 2D and 3D MC-based nanomaterials. To the end, the applications of MC-based 2D and 3D materials for chemical batteries, supercapacitors, water splitting, photodegradation, removal of heavy metals, and electromagnetic shielding are introduced and discussed. This work provides useful information on the preparation, hybridization, structural tailoring, and applications of MC-based materials, and is expected to inspire the design and fabrication of novel and functional MXene materials with improved performance.

2020 ◽  
Vol 2 (1) ◽  
pp. 052-052

Aim & Scope: Differing from traditional three-dimensional materials, two-dimensional (2D) materials represented by graphene have attracted wide attentions in the academic and industrial communities, which have ultra-high-ratio surface area, quantum limit effect, symmetry breaking and other factors that created its novel physical and chemical properties. 2D materials have become the focus of condensed matter physics, materials science and chemistry research. In this special issue, we are going to collect the recent progress of synthesis, characterization and functional devices application on novel 2D materials.


2019 ◽  
Author(s):  
Christian Harito ◽  
Dmitry V Bavykin ◽  
Brian Yuliarto ◽  
Hermawan K Dipojono ◽  
Frank C. Walsh

The recent development of nanoscale fillers, such as carbon nanotube, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches to the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address design of the polymer nanocomposite architecture, which encompass one, two, and three dimensional morphology. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of filler as well as interfacial bonding between filler and polymer are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale filler can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle-matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1123 ◽  
Author(s):  
Yan Wang ◽  
Lei Guo ◽  
Pengfei Qi ◽  
Xiaomin Liu ◽  
Gang Wei

Graphene-based nanostructures and nanomaterials have been widely used for the applications in materials science, biomedicine, tissue engineering, sensors, energy, catalysis, and environmental science due to their unique physical, chemical, and electronic properties. Compared to two-dimensional (2D) graphene materials, three-dimensional (3D) graphene-based hybrid materials (GBHMs) exhibited higher surface area and special porous structure, making them excellent candidates for practical applications in water purification. In this work, we present recent advances in the synthesis and water remediation applications of 3D GBHMs. More details on the synthesis strategies of GBHMs, the water treatment techniques, and the adsorption/removal of various pollutants from water systems with GBHMs are demonstrated and discussed. It is expected that this work will attract wide interests on the structural design and facile synthesis of novel 3D GBHMs, and promote the advanced applications of 3D GBHMs in energy and environmental fields.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1435 ◽  
Author(s):  
Gang Wei ◽  
Coucong Gong ◽  
Keke Hu ◽  
Yabin Wang ◽  
Yantu Zhang

Hydroxyapatite (HA) has been widely used in fields of materials science, tissue engineering, biomedicine, energy and environmental science, and analytical science due to its simple preparation, low-cost, and high biocompatibility. To overcome the weak mechanical properties of pure HA, various reinforcing materials were incorporated with HA to form high-performance composite materials. Due to the unique structural, biological, electrical, mechanical, thermal, and optical properties, graphene has exhibited great potentials for supporting the biomimetic synthesis of HA. In this review, we present recent advance in the biomimetic synthesis of HA on graphene supports for biomedical applications. More focuses on the biomimetic synthesis methods of HA and HA on graphene supports, as well as the biomedical applications of biomimetic graphene-HA nanohybrids in drug delivery, cell growth, bone regeneration, biosensors, and antibacterial test are performed. We believe that this review is state-of-the-art, and it will be valuable for readers to understand the biomimetic synthesis mechanisms of HA and other bioactive minerals, at the same time it can inspire the design and synthesis of graphene-based novel nanomaterials for advanced applications.


2019 ◽  
Author(s):  
Christian Harito ◽  
Dmitry V Bavykin ◽  
Brian Yuliarto ◽  
Hermawan K Dipojono ◽  
Frank C Walsh

The recent development of nanoscale fillers, such as carbon nanotube, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches to the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address design of the polymer nanocomposite architecture, which encompass one, two, and three dimensional morphology. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of filler as well as interfacial bonding between filler and polymer are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale filler can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle-matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.


2020 ◽  
Vol 1 (7) ◽  
pp. 2163-2181 ◽  
Author(s):  
Xinxiao Zhou ◽  
Bin Liu ◽  
Yun Chen ◽  
Lei Guo ◽  
Gang Wei

Carbon-nanofiber-based three-dimensional nanomaterials exhibit promising energy and environmental science applications.


2D Materials ◽  
2021 ◽  
Author(s):  
Xiaocong Tian

Abstract Atomically thin two-dimensional (2D) materials are excellent supercapacitor electrode candidates with intriguing physical and chemical properties. As a typical three-dimensional (3D) printing technique, direct ink writing (DIW) provides a new platform to bridge the gap between 2D materials and advanced supercapacitor electrodes. In the current review, recent progresses in DIW of 2D materials for supercapacitor applications is systematically presented, in which basic DIW processes, key scientific/technical points and corresponding strategies are highlighted. Ink fabrication and optimization based on 2D materials are discussed for supercapacitors, and recent advances in DIW of a variety of 2D material (including graphene, transition metal carbides and/or nitride (MXene), transition metal dichalcogenide (TMD) and others)-based supercapacitor electrodes are offered. Furthermore, conclusions along with a brief discussion on challenges and opportunities of DIW-manufactured 2D materials are also provided for future supercapacitor applications.


2019 ◽  
Author(s):  
Christian Harito ◽  
Dmitry V Bavykin ◽  
Brian Yuliarto ◽  
Hermawan K Dipojono ◽  
Frank C Walsh

The recent development of nanoscale fillers, such as carbon nanotubes, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches for the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address the design of the polymer nanocomposite architecture, which encompasses one, two, and three dimensional morphologies. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of the filler and interfacial bonding between the filler and polymer, are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale fillers can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle–matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5390
Author(s):  
Lianming Zhang ◽  
Lei Guo ◽  
Gang Wei

Cellulose is one of the important biomass materials in nature and has shown wide applications in various fields from materials science, biomedicine, tissue engineering, wearable devices, energy, and environmental science, as well as many others. Due to their one-dimensional nanostructure, high specific surface area, excellent biodegradability, low cost, and high sustainability, cellulose nanofibrils/nanofibers (CNFs) have been widely used for environmental science applications in the last years. In this review, we summarize the advance in the design, synthesis, and water purification applications of CNF-based functional nanomaterials. To achieve this aim, we firstly introduce the synthesis and functionalization of CNFs, which are further extended for the formation of CNF hybrid materials by combining with other functional nanoscale building blocks, such as polymers, biomolecules, nanoparticles, carbon nanotubes, and two-dimensional (2D) materials. Then, the fabrication methods of CNF-based 2D membranes/films, three-dimensional (3D) hydrogels, and 3D aerogels are presented. Regarding the environmental science applications, CNF-based nanomaterials for the removal of metal ions, anions, organic dyes, oils, and bio-contents are demonstrated and discussed in detail. Finally, the challenges and outlooks in this promising research field are discussed. It is expected that this topical review will guide and inspire the design and fabrication of CNF-based novel nanomaterials with high sustainability for practical applications.


2019 ◽  
Author(s):  
Christian Harito ◽  
Dmitry V Bavykin ◽  
Brian Yuliarto ◽  
Hermawan K Dipojono ◽  
Frank C. Walsh

The recent development of nanoscale fillers, such as carbon nanotube, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches to the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address design of the polymer nanocomposite architecture, which encompass one, two, and three dimensional morphology. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of filler as well as interfacial bonding between filler and polymer are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale filler can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle-matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.


Sign in / Sign up

Export Citation Format

Share Document