scholarly journals Improved conductivity and ionic mobility in nanostructured thin films via aliovalent doping for ultra-high rate energy storage

2020 ◽  
Vol 2 (5) ◽  
pp. 2160-2169
Author(s):  
Clayton T. Kacica ◽  
Pratim Biswas

Synthesis of Cu-doped TiO2 nanostructures with excellent high-rate lithium-ion battery performance and enhanced lithium-ion diffusion.

2019 ◽  
Vol 123 (25) ◽  
pp. 15412-15418 ◽  
Author(s):  
Dong Fan ◽  
Andrey A. Golov ◽  
Artem A. Kabanov ◽  
Chengke Chen ◽  
Shaohua Lu ◽  
...  

2021 ◽  
Vol 1028 ◽  
pp. 138-143
Author(s):  
Iman Rahayu ◽  
Anggi Suprabawati ◽  
Vina M. Puspitasari ◽  
Sahrul Hidayat ◽  
Atiek Rostika Noviyanti

Lithium ion batteries with LiFePO4 cathode have become the focus of research because they are eco-friendly, stable, high average voltage (3.5 V), and high theoretical capacity (170 mAh/g). However, LiFePO4 has disadvantages such as low electrical conductivity (~10-9 S/cm) and low lithium ion diffusion coefficient (~10-14-10-15 cm2/s) that can inhibit its application as a lithium ion battery cathode material. To increase the electronic conductivity of LiFePO4, it can be done by adding carbon as a coating material, then doping gadolinium metal ions because it has a radius similar to Fe, and increasing sintering temperature. Optimizing the sintering temperature can control particle growth and research was study the sintering temperature of the electronic conductivity of LiFeGdPO4/C and obtain the optimum sintering temperature at LiFeGdPO4/C. The carbothermal reduction method used in synthesis, with a variation of sintering temperature of 800°C, 830°C, 850°C, 870°C, and 900°C using reagents LiH2PO4, Fe2O3, Gd2O3, and carbon black. Furthermore the samples were characterized using XRD, SEM-EDS, and four-point probes. The results of the study were expected to increase the conductivity of LiFePO4. The results show the effect of sintering temperature can increase the electronic conductivity of LiFeGdPO4/C. Samples with a sintering temperature 850°C have the highest conductivity among all temperature variations with a value of 1.11 × 10-5 S cm-1.


2020 ◽  
Author(s):  
Sun Woong Baek ◽  
Kira E. Wyckoff ◽  
Danielle M. Butts ◽  
Jadon Bienz ◽  
AMPOL LIKITCHATCHAWANKUN ◽  
...  

<div>The shear-phase compound TiNb<sub>2</sub>O<sub>7</sub> has recently emerged as a safe and high-volumetric density replacement for graphite anodes in lithium ion batteries. An appealing feature of TiNb<sub>2</sub>O<sub>7</sub> is that it retains capacity even at high cycling rates. Here we demonstrate that phase pure and crystalline TiNb<sub>2</sub>O<sub>7</sub> can be rapidly prepared using a high-temperature microwave synthesis method. Studies of the charging and discharging of this material, including through operando calorimetry, permit key thermodynamic parameters to be revealed. The nature of heat generation is dominated by Joule heating, which sensitively changes as the conductivity of the electrode increases with increasing lithiation. The enthalpy of mixing, obtained from operando calorimetry, is found to be small across the different degrees of lithiation pointing to the high rate of lithium ion diffusion at the origin of rapid rate performance.</div>


2020 ◽  
Author(s):  
Sun Woong Baek ◽  
Kira E. Wyckoff ◽  
Danielle M. Butts ◽  
Jadon Bienz ◽  
AMPOL LIKITCHATCHAWANKUN ◽  
...  

<div>The shear-phase compound TiNb<sub>2</sub>O<sub>7</sub> has recently emerged as a safe and high-volumetric density replacement for graphite anodes in lithium ion batteries. An appealing feature of TiNb<sub>2</sub>O<sub>7</sub> is that it retains capacity even at high cycling rates. Here we demonstrate that phase pure and crystalline TiNb<sub>2</sub>O<sub>7</sub> can be rapidly prepared using a high-temperature microwave synthesis method. Studies of the charging and discharging of this material, including through operando calorimetry, permit key thermodynamic parameters to be revealed. The nature of heat generation is dominated by Joule heating, which sensitively changes as the conductivity of the electrode increases with increasing lithiation. The enthalpy of mixing, obtained from operando calorimetry, is found to be small across the different degrees of lithiation pointing to the high rate of lithium ion diffusion at the origin of rapid rate performance.</div>


Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3782-3789
Author(s):  
Huanhui Chen ◽  
Guanxia Ke ◽  
Xiaochao Wu ◽  
Wanqing Li ◽  
Hongwei Mi ◽  
...  

SnTe exhibits a layered crystal structure, which enables fast Li-ion diffusion and easy storage, and is considered to be a promising candidate for an advanced anode material.


2019 ◽  
Vol 225 ◽  
pp. 34-41 ◽  
Author(s):  
Navaratnarajah Kuganathan ◽  
Apostolos Kordatos ◽  
Sripathmanathan Anurakavan ◽  
Poobalasuntharam Iyngaran ◽  
Alexander Chroneos

Sign in / Sign up

Export Citation Format

Share Document