scholarly journals Molybdenum oxynitride nanoparticles on nitrogen-doped CNT architectures for the oxygen evolution reaction

2020 ◽  
Vol 2 (12) ◽  
pp. 5659-5665
Author(s):  
Sucheng Ji ◽  
Wushuang Chen ◽  
Zhixin Zhao ◽  
Xu Yu ◽  
Ho Seok Park

The partial nitridation of transistion metal-based electrocatalysts are considered the potential alternative to nobel metal-based ones owing to their comparable electrocatalytic activity, durability, and low cost for oxygen evolution reaction (OER).

2021 ◽  
Author(s):  
A. Rebekah ◽  
Viswanathan Chinnuswamy ◽  
Nagamony Ponpandian

The present work depicts the fabrication of NiCo2O4 decorated on rGO, doped and co-doped rGO and its electrocatalytic activity towards oxygen evolution reaction and methanol oxidation reaction. The catalyst NiCo2O4...


Author(s):  
Santosh K. Singh ◽  
Kotaro Takeyasu ◽  
Bappi Paul ◽  
Sachin K. Sharma ◽  
Junji Nakamura

The development of high-performance, low-cost transition metal oxide nanoparticle-supported carbon catalysts for oxygen evolution reaction (OER) is one of the biggest challenges faced in the process of commercializing water electrolyzers and rechargeable metal–air batteries.


Nanoscale ◽  
2021 ◽  
Author(s):  
Bin He ◽  
Juan-Juan Song ◽  
Xiao-Yu Li ◽  
Chun-Yu Xu ◽  
Yi-Bo Li ◽  
...  

Exploring highly effective and low-cost non-noble metal-based electrocatalysts for oxygen evolution reaction (OER) is critical for renewable energy conversion and metal–air batteries.


2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


Author(s):  
Shuya Zhao ◽  
Yurui Xue ◽  
Zhongqiang Wang ◽  
Zhiqiang Zheng ◽  
Xiaoyu Luan ◽  
...  

Developing highly active, stable and low-cost electrocatalysts capable of an efficient oxygen evolution reaction (OER) is urgent and challenging.


2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jun Huang ◽  
Yanping Hou ◽  
...  

The oxygen evolution reaction (OER) is an important half-reaction in the field of energy production. However, how effectively, simply, and greenly to prepare low-cost OER electrocatalysts remains a problem. Herein,...


2021 ◽  
Author(s):  
Venkataramanan Mahalingam ◽  
Sourav Ghosh ◽  
Rajkumar Jana ◽  
Sagar Ganguli ◽  
Harish Reddy Inta ◽  
...  

The quest for developing next-generation non-precious electrocatalyst is getting aroused in recent times. Herein, we have designed and developed a low cost electrocatalyst by ligand-assisted synthetic strategy in aqueous medium....


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 657
Author(s):  
Geul Han Kim ◽  
Yoo Sei Park ◽  
Juchan Yang ◽  
Myeong Je Jang ◽  
Jaehoon Jeong ◽  
...  

Developing high performance, highly stable, and low-cost electrodes for the oxygen evolution reaction (OER) is challenging in water electrolysis technology. However, Ir- and Ru-based OER catalysts with high OER efficiency are difficult to commercialize as precious metal-based catalysts. Therefore, the study of OER catalysts, which are replaced by non-precious metals and have high activity and stability, are necessary. In this study, a copper–cobalt oxide nanosheet (CCO) electrode was synthesized by the electrodeposition of copper–cobalt hydroxide (CCOH) on Ni foam followed by annealing. The CCOH was annealed at various temperatures, and the structure changed to that of CCO at temperatures above 250 °C. In addition, it was observed that the nanosheets agglomerated when annealed at 300 °C. The CCO electrode annealed at 250 °C had a high surface area and efficient electron conduction pathways as a result of the direct growth on the Ni foam. Thus, the prepared CCO electrode exhibited enhanced OER activity (1.6 V at 261 mA/cm2) compared to those of CCOH (1.6 V at 144 mA/cm2), Co3O4 (1.6 V at 39 mA/cm2), and commercial IrO2 (1.6 V at 14 mA/cm2) electrodes. The optimized catalyst also showed high activity and stability under high pH conditions, demonstrating its potential as a low cost, highly efficient OER electrode material.


Sign in / Sign up

Export Citation Format

Share Document