Theoretical study on the adsorption and catalytic degradation mechanism of sulfacetamide on anatase TiO2(001) and (101) surfaces

2021 ◽  
Vol 45 (6) ◽  
pp. 3234-3241
Author(s):  
Kai Li ◽  
Jing Tang ◽  
Yang He ◽  
Jianmin Guo ◽  
Laicai Li

In this paper, the adsorption of sulfacetamide on anatase titanium dioxide (001) and (101) was studied. The mechanism of six degradation pathways of sulfacetamide was discussed.

2020 ◽  
Vol 44 (7) ◽  
pp. 2733-2740 ◽  
Author(s):  
Danyang Wang ◽  
Haichuan Qin ◽  
Qiaoqiao Qin ◽  
Xiang-Yang Liu ◽  
Laicai Li

The degradation mechanism of one new emerging pollutant ornidazole (ONZ) on TiO2 surface is explored using DFT calculations.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 502
Author(s):  
Guihua Dong ◽  
Bing Chen ◽  
Bo Liu ◽  
Stanislav R. Stoyanov ◽  
Yiqi Cao ◽  
...  

One of the most commonly produced industrial chemicals worldwide, bisphenol A (BPA), is used as a precursor in plastics, resins, paints, and many other materials. It has been proved that BPA can cause long-term adverse effects on ecosystems and human health due to its toxicity as an endocrine disruptor. In this study, we developed an integrated MnO2/UV/persulfate (PS) process for use in BPA photocatalytic degradation from water and examined the reaction mechanisms, degradation pathways, and toxicity reduction. Comparative tests using MnO2, PS, UV, UV/MnO2, MnO2/PS, and UV/PS processes were conducted under the same conditions to investigate the mechanism of BPA catalytic degradation by the proposed MnO2/UV/PS process. The best performance was observed in the MnO2/UV/PS process in which BPA was completely removed in 30 min with a reduction rate of over 90% for total organic carbon after 2 h. This process also showed a stable removal efficiency with a large variation of pH levels (3.6 to 10.0). Kinetic analysis suggested that 1O2 and SO4•− played more critical roles than •OH for BPA degradation. Infrared spectra showed that UV irradiation could stimulate the generation of –OH groups on the MnO2 photocatalyst surface, facilitating the PS catalytic degradation of BPA in this process. The degradation pathways were further proposed in five steps, and thirteen intermediates were identified by gas chromatography-mass spectrometry. The acute toxicity was analyzed during the treatment, showing a slight increase (by 3.3%) in the first 30 min and then a decrease by four-fold over 2 h. These findings help elucidate the mechanism and pathways of BPA degradation and provide an effective PS catalytic strategy.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012025
Author(s):  
S A Hamdan ◽  
I M Ibrahim ◽  
I M Ali

Abstract Rutile and anatase titanium dioxide TiO2 nanostructures has been prepared successfully by hydrothermal technique. Also Rutile and anatase TiO2/n-Si heterojunction detector (HJ) has been fabricated. Hall Effect measurements confirmed that prepared films are n-type. The optical absorption spectra showed the prepared films have peak absorption in UV region. TiO2/n-Si heterojunction had exhibited diode-like rectifying I-V behaviour in the dark as well as under the illumination. Ideality factor greater than 2 and rectification factor for Rutile TiO2/n-Si HJ is equal 32.0961 higher than anatase TiO2/n-Si HJ. Photodetetor based on rutile TiO2/n-Si HJ showed higher responsivity and incident photon-to-current efficiency (IPCE) than photodetector based on anatase TiO2/n-Si HJ. Photodetetor based on rutile TiO2/n-Si HJ has responsivity is 69.11Amp/W at 570 nm and IPCE is 21.2%at 370nm and 1.38% at 570nm. For the purpose of investigating the impacts of TiO2 crystal phase upon the performance of the device despite the fact that rutile has a lower band gap compared to anatase, rutile exhibits better photovoltaic activity due to its higher specific surface area.


2008 ◽  
Vol 53 (9(4)) ◽  
pp. 2292-2298 ◽  
Author(s):  
Fei Pei ◽  
Song Wu ◽  
Gang Wang ◽  
Ming Xu ◽  
Song-You Wang ◽  
...  

2020 ◽  
Vol 82 (7) ◽  
pp. 1454-1466
Author(s):  
Abdelhadi Jouali ◽  
Anas Salhi ◽  
Abdelkahhar Aguedach ◽  
El Kbir Lhadi ◽  
Mohammed El Krati ◽  
...  

Abstract Tannins are recalcitrant polyphenolic molecules that resist microbial attack. Their main environmental damage is due to their low biodegradability. This work aims to investigate the photo-catalytic degradation of two commercial tannin extracts, chestnut (hydrolysable tannin) and mimosa (condensed tannin). The experiments were carried out under UV-light irradiation in a continuous-flow reactor using titanium dioxide (TiO2) immobilized on cellulosic fibers. It was highlighted that photo-catalytic degradation is unfavourable in acidic medium and when the pH is too high (pH above 12); it reaches its maximum efficiency at pH 7.5 (99 and 97% for chestnut and mimosa, respectively). Nearly complete degradation of tannins requires an irradiation period of 6 h. The process efficiency is inversely affected by the concentration of tannins essentially above 75 mg/L for chestnut and 60 mg/L for mimosa. Above 240 mL/min, any increase in feed flow negatively affects the performance of the process. Furthermore, a significant decrease of treatment efficiency was seen when increasing the concentration of ethanol and salts in the medium. Obtained results suggest that UV-light irradiation in a continuous-flow photo-reactor using immobilized TiO2 may be considered as an adequate process for the treatment of water containing recalcitrant tannin molecules.


Sign in / Sign up

Export Citation Format

Share Document