Chromatographic property classification of narrowly distributed ZnS quantum dots

Nanoscale ◽  
2020 ◽  
Vol 12 (22) ◽  
pp. 12114-12125
Author(s):  
Sebastian Süβ ◽  
Katja Bartsch ◽  
Christina Wasmus ◽  
Cornelia Damm ◽  
Doris Segets ◽  
...  

Quantitative evaluation of chromatographic classification of narrowly distributed ZnS quantum dots regarding band gap ΔEg using methods from particle technology.

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 419
Author(s):  
Saradh Prasad ◽  
Mamduh J. Aljaafreh ◽  
Mohamad S. AlSalhi ◽  
Abeer Alshammari

The notable photophysical characteristics of perovskite quantum dots (PQDs) (CsPbBr3) are suitable for optoelectronic devices. However, the performance of PQDs is unstable because of their surface defects. One way to address the instability is to passivate PQDs using different organic (polymers, oligomers, and dendrimers) or inorganic (ZnS, PbS) materials. In this study, we performed steady-state spectroscopic investigations to measure the photoluminescence (PL), absorption (A), transmission (T), and reflectance (R) of perovskite quantum dots (CsPbBr3) and ethylene vinyl acetate/terpene phenol (1%) (EVA-TPR (1%), or EVA) copolymer/perovskite composites in thin films with a thickness of 352 ± 5 nm. EVA is highly transparent because of its large band gap; furthermore, it is inexpensive and easy to process. However, the compatibility between PQDs and EVA should be established; therefore, a series of analyses was performed to compute parameters, such as the band gap, the coefficients of absorbance and extinction, the index of refractivity, and the dielectric constant (real and imaginary parts), from the data obtained from the above investigation. Finally, the optical conductivities of the films were studied. All these analyses showed that the EVA/PQDs were more efficient and stable both physically and optically. Hence, EVA/PQDs could become copolymer/perovskite active materials suitable for optoelectronic devices, such as solar cells and perovskite/polymer light-emitting diodes (PPLEDs).


2006 ◽  
Vol 352 (32-35) ◽  
pp. 3633-3635 ◽  
Author(s):  
P.M. Naves ◽  
T.N. Gonzaga ◽  
A.F.G. Monte ◽  
N.O. Dantas

2015 ◽  
Vol 34 ◽  
pp. 73-78
Author(s):  
Irtiqa Syed ◽  
Santa Chawla

A novel one pot synthesis approach in oleic acid medium was employed to obtain monophasic ZnSe quantum dots (QD) of average size 3.7nm. The QDs were well crystalline in hexagonal phase as revealed by x-ray diffraction and high resolution transmission electron microscopy (HRTEM) studies. The ZnSe QDs exhibit sharp emission peak in the blue (465nm) with 385picosecond fluorescence decay time. The theoretical band gap corresponding to 3.7nm ZnSe QDs matched well with the measured 3.11eV band gap of synthesized QDs which thus showed quantum confinement effect.


2018 ◽  
Vol 86 ◽  
pp. 424-432 ◽  
Author(s):  
S.R. Munishwar ◽  
P.P. Pawar ◽  
S.Y. Janbandhu ◽  
R.S. Gedam

2017 ◽  
Vol 19 (36) ◽  
pp. 24915-24927 ◽  
Author(s):  
A. H. Reshak

The amalgamation of a wide optical band gap photocatalyst with visible-light-active CdO quantum dots (QDs) as sensitizers is one of the most efficient ways to improve photocatalytic performance under visible light irradiation.


2011 ◽  
Vol 107 (19) ◽  
Author(s):  
M. D. Leistikow ◽  
A. P. Mosk ◽  
E. Yeganegi ◽  
S. R. Huisman ◽  
A. Lagendijk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document