Asymmetric total syntheses of naturally occurring α,β-enone-containing RALs, L-783290 and L-783277 through intramolecular base-mediated macrolactonization reaction

2020 ◽  
Vol 18 (12) ◽  
pp. 2331-2345
Author(s):  
Joy Chakraborty ◽  
Ankan Ghosh ◽  
Samik Nanda

Asymmetric total synthesis of two naturally occurring α,β-enone containing RALs, L-783290 and L-783277 is described in this article.

2018 ◽  
Vol 15 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Vahideh Zadsirjan ◽  
Majid M. Heravi

Background: The most frequently used chiral auxiliaries, oxazolidinones (Evans' oxazolidinones) have been employed in 1,4-congugate addition reactions to α,β-unsaturated carbonyl compounds. Supplementary to our previous reports in this mini-review, we attempted to underscore the applications of this strategy in a step (steps) in the total synthesis of some naturally occurring compounds exhibiting diverse biological activities. Objective: In this mini-review, we try to underscore the applications of oxazolidinones (Evans’ oxazolidinones) in 1,4-congugate addition reactions to α,β-unsaturated carbonyl in the total synthesis of some naturally occurring compounds exhibiting diverse biological activities. Conclusion: In spite of well-known superiority of asymmetric catalyzed reactions, the use of auxiliarycontrolled reactions are still considered as commanding, vital and sometimes as only tools in the generation of stereogenic centers during the construction of complex molecules and total synthesis of naturally occurring compounds. The commercial availability, or readily accessibility of a wide variety of chiral amino alcohols as starting materials to synthesize a wide range of oxazolidinones is the merits of them. In addition, the ease of removal and subjection to various and diverse stereoselective reactions make oxazolidinones as the ideal and superior chiral auxiliaries. In this regard, they were successfully used in asymmetric 1,4-conjugate addition reactions with high stereoselectivities. The high degree of asymmetric induction can be attributed to the rigid chelation of N-acyloxazolidinones with metal ions, as well as the covering of one face of the system by the bulkiness of 4-substituent. In summary, in this report, the importance of the applications of chiral oxazolidinones as suitable chiral auxiliaries in the stereoselective, 1,4-conjugate addition reactions in asymmetric synthesis and in particular, the total synthesis of naturally occurring compounds and some complex molecules were underscored. Noticeably, in these total syntheses, this chiral auxiliary is controlling the stereochemistry of a newly created stereogenic center as well as preserving the configuration of other chiral centers, which already have been presented in the precursor. General methods have been established for the attachment of the chiral auxiliary as a moiety to the substrate molecule in high to excellent yields. At the end of these reactions, this auxiliary can be easily removed leaving various desired reactive motifs for the next step in multi-step synthesis.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5938
Author(s):  
Jaehoon Sim ◽  
Eunbin Jang ◽  
Hyun Jin Kim ◽  
Hongjun Jeon

Pladienolides, an emerging class of naturally occurring spliceosome modulators, exhibit interesting structural features, such as highly substituted 12-membered macrocycles and epoxide-containing diene side chains. The potential of pladienolides as anti-cancer agents is confirmed by H3B-8800, a synthetic analog of this natural product class, which is currently under Phase I clinical trials. Since its isolation in 2004 and the first total synthesis in 2007, a dozen total syntheses and synthetic approaches toward the pladienolide class have been reported to date. This review focuses on the eight completed total syntheses of naturally occurring pladienolides or their synthetic analogs, in addition to a synthetic approach to the main framework of the natural product.


2019 ◽  
Vol 17 (31) ◽  
pp. 7369-7379 ◽  
Author(s):  
Joy Chakraborty ◽  
Samik Nanda

An efficient asymmetric total synthesis of naturally occurring resorcylic acid lactone (RAL) paecilomycin C was achieved by employing carboxylate assisted 5-exo-tet ring opening of an epoxide as a key reaction.


2018 ◽  
Vol 47 (21) ◽  
pp. 8030-8056 ◽  
Author(s):  
Hiroshi Takikawa ◽  
Arata Nishii ◽  
Takahiro Sakai ◽  
Keisuke Suzuki

This review has outlined the strategies and tactics of using arynes in the total syntheses of polycyclic natural products.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4211
Author(s):  
Yu-Yan Liang ◽  
Shi-Chao Lu ◽  
Ya-Ling Gong ◽  
Shu Xu

The palhinine family of Lycopodium alkaloids were first reported in 2010, which feature an intriguing isotwistane carbon cage and a nine-membered azonane ring. It is noteworthy that the tetracyclic 5/6/6/9 skeleton was unprecedented in Lycopodium alkaloids before their seminal discovery. Over the past decade, extensive synthetic efforts stemming from seven research groups have resulted in two racemic total syntheses to date. This review article takes the opportunity to survey these efforts and achievements so as to promote further research towards the asymmetric total synthesis of palhinine alkaloids.


2019 ◽  
Vol 17 (14) ◽  
pp. 3552-3566 ◽  
Author(s):  
Ranjan Kumar Acharyya ◽  
Pratik Pal ◽  
Shrestha Chatterjee ◽  
Samik Nanda

An efficient asymmetric total synthesis of naturally occurring γ-Z-butenolide cryptoconcatone I was achieved by employing substrate-directed reductive epoxide ring opening and late-stage “Pd–Cu” catalyzed cascade cyclization.


2018 ◽  
Vol 16 (4) ◽  
pp. 585-592 ◽  
Author(s):  
Deng-Ming Huang ◽  
Hui-Jing Li ◽  
Jun-Hu Wang ◽  
Yan-Chao Wu

The first asymmetric total syntheses of talienbisflavan A and bis-8,8′-epicatechinylmethane as well as a facile synthesis of bis-8,8′-catechinylmethane has been accomplished from readily available starting materials by using a newly developed direct regioselective methylenation of catechin derivatives as one of the key steps.


2002 ◽  
Vol 124 (26) ◽  
pp. 7847-7852 ◽  
Author(s):  
Toshio Nishikawa ◽  
Masanori Asai ◽  
Minoru Isobe

2018 ◽  
Vol 16 (27) ◽  
pp. 5027-5035 ◽  
Author(s):  
Ranjan Kumar Acharyya ◽  
Samik Nanda

Asymmetric total synthesis of naturally occurring γ-butenolide containing [4.4]spiro-tetrahydrofuran lanceolactone A has been reported in this present work. Bimetallic (“Pd–Cu”) cascade cyclization was the crucial reaction employed for the construction of the γ-butenolide framework of the natural product.


2017 ◽  
Vol 4 (3) ◽  
pp. 381-396 ◽  
Author(s):  
Jin Song ◽  
Dian-Feng Chen ◽  
Liu-Zhu Gong

Abstract Indole and its structural analogues have been frequently found in numerous alkaloids, pharmaceutical products and related materials. The enantioselective construction of these structures allows efficient total synthesis of optically pure indole alkaloids, and hence has received worldwide interest. In the past decade, asymmetric organocatalysis has been recognized as one of the most powerful strategies to create chiral molecules with high levels of stereoselectivity. In particular, organocatalytic asymmetric cascade reactions often occur with multiple bond-breaking and forming events simultaneously or sequentially, leading to the appearance of various straightforward approaches to access core structures for asymmetric total synthesis. This review will summarize recent applications of asymmetric organocatalysis in the enantioselective synthesis of indole alkaloids.


Sign in / Sign up

Export Citation Format

Share Document