scholarly journals The effects of DOPO modified Co-based metalorganic framework on flame retardancy, stiffness and thermal stability of epoxy resin

RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6781-6790
Author(s):  
Liyun Cai ◽  
Fei Xin ◽  
Congcong Zhai ◽  
Yu Chen ◽  
Bo Xu ◽  
...  

The DOPO@ZIF-67 promoted the carbonization process of the EP flame retardant composites, and the rigidity and damping coefficient of EP composites are also improved compared with pure EP.

2020 ◽  
pp. 073490412093408
Author(s):  
Wei Yan ◽  
Pu Xie ◽  
Zhengwei Yang ◽  
Guangjin Luo ◽  
Weijiang Huang ◽  
...  

Aluminum phosphates coated sepiolite nanocomposite was fabricated via a simple one-pot heterogeneous precipitation strategy, and the effects of aluminum phosphates on the morphology of aluminum phosphates coated sepiolite were investigated. Moreover, the effect of aluminum phosphates coated sepiolite on the flame-retardant behavior, mechanical properties, and thermal stability of epoxy resin have been discussed. The results indicated that the introduction of only 20 wt% aluminum phosphates coated sepiolite in epoxy resin increased the limited oxygen index from 21.8% to 30.1%, thus the material met the UL-94 V-0 rating. Thermogravimetric analyses revealed that char yield increased in the presence of aluminum phosphates coated sepiolite form thermally stable carbonaceous char. Aluminum phosphates–coated sepiolite could improve the mechanical performance, thermal stability of epoxy resin.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 380 ◽  
Author(s):  
Wei Zhao ◽  
Yongxiang Li ◽  
Qiushi Li ◽  
Yiliang Wang ◽  
Gong Wang

The flame retardant modification of epoxy (EP) is of great signification for aerospace, automotive, marine, and energy industries. In this study, a series of EP composites containing different variations of phosphorus-containing polysulfone (with a phosphorus content of approximately 1.25 wt %) were obtained. The obtained EP/polysulfone composites had a high glass transition temperature (Tg) and high flame retardancy. The influence of phosphorus-containing compounds (ArPN2, ArPO2, ArOPN2 and ArOPO2) on the thermal properties and flame retardancy of EP/polysulfone composites was investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), a UL-94 vertical burning test, and cone calorimeter tests. The phosphorus-containing polysulfone enhanced the thermal stability of EP. The more stable porous char layer, less flammable gases, and a lower apparent activation energy at a high degree of conversion demonstrated the high gas inhibition effect of phosphorus-containing compounds. Moreover, the gas inhibition effect of polysulfone with a P–C bond was more efficient than the polysulfone with a P–O–C bond. The potential for optimizing flame retardancy while maintaining a high Tg is highlighted in this study. The flame-retardant EP/polysulfone composites with high thermal stability broaden the application field of epoxy.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1062 ◽  
Author(s):  
Junlei Chen ◽  
Jihui Wang ◽  
Aiqing Ni ◽  
Hongda Chen ◽  
Penglong Shen

In this work, a novel phosphorous–nitrogen based charring agent named poly(1,3-diaminopropane-1,3,5-triazine-o-bicyclic pentaerythritol phosphate) (PDTBP) was synthesized and used to improve the flame retardancy of high-density polyethylene (HDPE) together with ammonium polyphosphate (APP). The results of Fourier transform infrared spectroscopy (FTIR) and 13C solid-state nuclear magnetic resonance (NMR) showed that PDTBP was successfully synthesized. Compared with the traditional intumescent flame retardant (IFR) system contained APP and pentaerythritol (PER), the novel IFR system (APP/PDTBP, weight ratio of 2:1) could significantly promote the flame retardancy, water resistance, and thermal stability of HDPE. The HDPE/APP/PDTBP composites (PE3) could achieve a UL-94 V-0 rating with LOI value of 30.8%, and had a lower migration percentage (2.2%). However, the HDPE/APP/PER composites (PE5) had the highest migration percentage (4.7%), lower LOI value of 23.9%, and could only achieve a UL-94 V-1 rating. Besides, the peak of heat release rate (PHRR), total heat release (THR), and fire hazard value of PE3 were markedly decreased compared to PE5. PE3 had higher tensile strength and flexural strength of 16.27 ± 0.42 MPa and 32.03 ± 0.59 MPa, respectively. Furthermore, the possible flame-retardant mechanism of the APP/PDTBP IFR system indicated that compact and continuous intumescent char layer would be formed during burning, thus inhibiting the degradation of substrate material and improving the thermal stability of HDPE.


2012 ◽  
Vol 482-484 ◽  
pp. 1863-1868 ◽  
Author(s):  
Ya Wen Huang ◽  
Jia Jun Ma ◽  
Jun Xiao Yang

Copolymer of p-phenylenediamine and bispirocyclic pentaerythritol diphosphate was synthesized and characterized by FTIR and 1H NMR. This polymer was used to prepare epoxy resin/SPDA composites. Thermal stability of SPDA and epoxy/SPDA composites were investigated by thermogravimetric analysis (TGA), and their flammability were investigated by the LOI test. TGA results showed that the addition of SPDA improved the char residue of epoxy resin. SEM investigation showed that the residual chars have a honeycomb-like structure, indicating an intumescent flame retarding effect of SPDA in composites. In addition, all of above results confirmed that accelerate carbonization play a key role in improving flame retardancy of epoxy resin.


2012 ◽  
Vol 24 (8) ◽  
pp. 738-746 ◽  
Author(s):  
Rui Zhang ◽  
Xifu Xiao ◽  
Qilong Tai ◽  
Hua Huang ◽  
Jian Yang ◽  
...  

Lignin–silica hybrids (LSHs) were prepared by sol–gel method and characterized by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). LSH and ammonium polyphosphate (APP) were added into poly(lactic acid) (PLA) as a novel intumescent flame-retardant (IFR) system to improve the flame retardancy of PLA. The flame-retardant effect of APP and LSH in PLA was studied using limiting oxygen index (LOI), vertical burning (UL-94) tests and cone calorimeter. The thermal stability of PLA/APP/LSH composites was evaluated by thermogravimetric analysis (TGA). Additionally, the morphology and components of char residues of the IFR-PLA composites were investigated by SEM and XPS. With the addition of APP/LSH to PLA system, the morphology of the char residue has obviously changed. Compared with PLA/APP and PLA/APP/lignin, a continuous and dense intumescent charring layer with more phosphor in PLA composites is formed, which exhibits better flame retardancy. All the results show that the combination of APP and LSH can improve the flame-retardant property and increase the thermal stability of PLA composites greatly.


2012 ◽  
Vol 554-556 ◽  
pp. 110-114
Author(s):  
Da Ming Ban ◽  
Yang Min ◽  
Yong Hang Zhang ◽  
Ou Zhao

Two phosphorus-containing flame retardant (FR) were synthesized and incorporated in the backbone of polyamide 6(PA6) by polymerization. The structure and spectroscopic data of these flame retardant were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Elemental analysis. Flame-retardancy and thermal property of PA6 modified with CEP, and MMP were examined by LOI and TGA. The LOI value of PA6 shows ascending trend by adding FRs, and it rise from 24 to 31%. TGA data revealed that FR improves thermal stability of PA6. The on-set temperature was added at least 20°C.


10.6036/10327 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 98-103
Author(s):  
XIAN WANG ◽  
JINLONG ZHUO ◽  
TIANQING XING ◽  
Xingran Wang

In order to reduce flammability, smoke release and enhance thermal stability of epoxy resin (EP), iron powder is mixed with graphene oxide/ epoxy resin (GO/EP) composite by mechanical blending. The combustion performance of composite material is investigated through limiting oxygen index (LOI), Underwriters Laboratory (UL)-94 test, and cone calorimeter test (CCT). Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and scanning electron microscope (SEM) are also used to explore the mechanism of flame retardancy and smoke suppression. Results show that, with the addition of 0.5% mass fraction of GO and the corresponding iron powder combination (EP3 sample), the LOI value can achieve 32.5% while reaching the UL-94 V0 rating. Compare with EP0, the peaks of heat release rate, smoke production rate, and smoke factor values of EP3 are decreased by 42%, 60%, and 50%, respectively. The char and TG-FTIR data of EP3 reveal that it has a more compact structure, good thermal stability, and produce fewer toxic gases and smoke. Reduction of GO could inhibit the degradation of EP, and iron catalyzes the formation of carbonaceous char on the surface. Thus, the thermal stability and flame retardancy of EP are improved significantly. This study provides a suitable way to prepare graphene/EP composites that contain iron catalyst and can be extended to the industrial manufacture of flame retardant polymer composites. Keywords: iron powder; epoxy resin; graphene oxide; flame retardant; thermal stability


2011 ◽  
Vol 236-238 ◽  
pp. 482-485 ◽  
Author(s):  
Ru Lin Fu ◽  
Xian Su Cheng

A novel intumescent flame retardant (IFR), melamine modified enzymatic hydrolysis lignin (MEHL), was synthesized and well characterized by FTIR and TGA. The results showed that the decompose temperature of MEHL is much higher than that of enzymatic hydrolysis lignin (EHL). In order to improve flame retardancy and dripping resistance of EPDM, MEHL and microencapsulated red phosphorus (MRP) were added into EPDM as IFR system. The flame ability and thermal stability of IFR and EPDM composites were investigated by UL-94 vertical burning test and LOI measurements. The results indicated that FV-0 was reached and the LOI value was 35 when per hundred rubber (phr) together with 12 phr MRP and 50 phr EHLM were added. SEM photos showed that the char residue was continuous, and a barrier between flame and rubber was formed, while there were also small holes in its surfaces. On all accounts, EHL used as a carbonization agent instead of petroleum chemicals, such as pentaerythritol, was more environmental friendly and beneficial to economy.


Sign in / Sign up

Export Citation Format

Share Document