scholarly journals Novel and versatile artificial intelligence algorithms for investigating possible GHSR1α and DRD1 agonists for Alzheimer's disease

RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6423-6446
Author(s):  
Zi-Qiang Tang ◽  
Lu Zhao ◽  
Guan-Xing Chen ◽  
Calvin Yu-Chian Chen

Using artificial intelligence technology to screen possible herbal drugs for Alzheimer's disease.

2020 ◽  
Vol 78 (4) ◽  
pp. 1547-1574
Author(s):  
Sofia de la Fuente Garcia ◽  
Craig W. Ritchie ◽  
Saturnino Luz

Background: Language is a valuable source of clinical information in Alzheimer’s disease, as it declines concurrently with neurodegeneration. Consequently, speech and language data have been extensively studied in connection with its diagnosis. Objective: Firstly, to summarize the existing findings on the use of artificial intelligence, speech, and language processing to predict cognitive decline in the context of Alzheimer’s disease. Secondly, to detail current research procedures, highlight their limitations, and suggest strategies to address them. Methods: Systematic review of original research between 2000 and 2019, registered in PROSPERO (reference CRD42018116606). An interdisciplinary search covered six databases on engineering (ACM and IEEE), psychology (PsycINFO), medicine (PubMed and Embase), and Web of Science. Bibliographies of relevant papers were screened until December 2019. Results: From 3,654 search results, 51 articles were selected against the eligibility criteria. Four tables summarize their findings: study details (aim, population, interventions, comparisons, methods, and outcomes), data details (size, type, modalities, annotation, balance, availability, and language of study), methodology (pre-processing, feature generation, machine learning, evaluation, and results), and clinical applicability (research implications, clinical potential, risk of bias, and strengths/limitations). Conclusion: Promising results are reported across nearly all 51 studies, but very few have been implemented in clinical research or practice. The main limitations of the field are poor standardization, limited comparability of results, and a degree of disconnect between study aims and clinical applications. Active attempts to close these gaps will support translation of future research into clinical practice.


2019 ◽  
Vol 18 ◽  
pp. 153601211986907 ◽  
Author(s):  
Ian R. Duffy ◽  
Amanda J. Boyle ◽  
Neil Vasdev

Machine learning (ML) algorithms have found increasing utility in the medical imaging field and numerous applications in the analysis of digital biomarkers within positron emission tomography (PET) imaging have emerged. Interest in the use of artificial intelligence in PET imaging for the study of neurodegenerative diseases and oncology stems from the potential for such techniques to streamline decision support for physicians providing early and accurate diagnosis and allowing personalized treatment regimens. In this review, the use of ML to improve PET image acquisition and reconstruction is presented, along with an overview of its applications in the analysis of PET images for the study of Alzheimer's disease and oncology.


2020 ◽  
Author(s):  
Bo Xie ◽  
Cui Tao ◽  
Juan Li ◽  
Robin C Hilsabeck ◽  
Alyssa Aguirre

BACKGROUND Artificial intelligence (AI) has great potential for improving the care of persons with Alzheimer’s disease and related dementias (ADRD) and the quality of life of their family caregivers. To date, however, systematic review of the literature on the impact of AI on ADRD management has been lacking. OBJECTIVE This paper aims to (1) identify and examine literature on AI that provides information to facilitate ADRD management by caregivers of individuals diagnosed with ADRD and (2) identify gaps in the literature that suggest future directions for research. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for conducting systematic literature reviews, during August and September 2019, we performed 3 rounds of selection. First, we searched predetermined keywords in PubMed, Cumulative Index to Nursing and Allied Health Literature Plus with Full Text, PsycINFO, IEEE Xplore Digital Library, and the ACM Digital Library. This step generated 113 nonduplicate results. Next, we screened the titles and abstracts of the 113 papers according to inclusion and exclusion criteria, after which 52 papers were excluded and 61 remained. Finally, we screened the full text of the remaining papers to ensure that they met the inclusion or exclusion criteria; 31 papers were excluded, leaving a final sample of 30 papers for analysis. RESULTS Of the 30 papers, 20 reported studies that focused on using AI to assist in activities of daily living. A limited number of specific daily activities were targeted. The studies’ aims suggested three major purposes: (1) to test the feasibility, usability, or perceptions of prototype AI technology; (2) to generate preliminary data on the technology’s performance (primarily accuracy in detecting target events, such as falls); and (3) to understand user needs and preferences for the design and functionality of to-be-developed technology. The majority of the studies were qualitative, with interviews, focus groups, and observation being their most common methods. Cross-sectional surveys were also common, but with small convenience samples. Sample sizes ranged from 6 to 106, with the vast majority on the low end. The majority of the studies were descriptive, exploratory, and lacking theoretical guidance. Many studies reported positive outcomes in favor of their AI technology’s feasibility and satisfaction; some studies reported mixed results on these measures. Performance of the technology varied widely across tasks. CONCLUSIONS These findings call for more systematic designs and evaluations of the feasibility and efficacy of AI-based interventions for caregivers of people with ADRD. These gaps in the research would be best addressed through interdisciplinary collaboration, incorporating complementary expertise from the health sciences and computer science/engineering–related fields.


Sign in / Sign up

Export Citation Format

Share Document