scholarly journals Structural basis for recognition of bacterial cell wall teichoic acid by pseudo-symmetric SH3b-like repeats of a viral peptidoglycan hydrolase

2021 ◽  
Author(s):  
Yang Shen ◽  
Ioanna Kalograiaki ◽  
Alessio Prunotto ◽  
Matthew Dunne ◽  
Samy Boulos ◽  
...  

Combining genetic, biochemical and computational approaches, we elucidated the molecular mechanisms underlying the recognition of Listeria wall teichoic acid by bacteriophage-encoded SH3b repeats.

Science ◽  
2013 ◽  
Vol 341 (6149) ◽  
pp. 1012-1016 ◽  
Author(s):  
Ben C. Chung ◽  
Jinshi Zhao ◽  
Robert A. Gillespie ◽  
Do-Yeon Kwon ◽  
Ziqiang Guan ◽  
...  

MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that are central in many biological processes. We present the crystal structure of MraY from Aquifex aeolicus (MraYAA) at 3.3 Å resolution, which allows us to visualize the overall architecture, locate Mg2+ within the active site, and provide a structural basis of catalysis for this class of enzyme.


2017 ◽  
Author(s):  
Renata C. Matos ◽  
Hugo Gervais ◽  
Pauline Joncour ◽  
Martin Schwarzer ◽  
Benjamin Gillet ◽  
...  

SummaryThe microbial environment influence animal physiology. However, the underlying molecular mechanisms of such functional interactions are largely undefined. Previously, we showed that upon chronic undernutrition, strains of Lactobacillus plantarum, a dominant commensal partner of Drosophila, promote host juvenile growth and maturation partly via enhanced expression of intestinal peptidases. By screening a transposon insertion library of Lactobacillus plantarum in gnotobiotic Drosophila larvae, we identify a bacterial cell wall modifying machinery encoded by the pbpX2-dltXABCD operon that is critical to enhance host digestive capabilities and promote growth and maturation. Deletion of this operon leads to bacterial cell wall alteration with a complete loss of teichoic acids D-alanylation. We thus conclude that teichoic acids modifications participate in commensal-host interactions and specifically, D-alanine esterification of teichoic acids contributes to optimal L. plantarum mediated intestinal peptidase expression and Drosophila juvenile growth upon chronic undernutrition.Highlights- LpNC8 mutant library screening identifies genes affecting Drosophila growth promotion.- pbpX2-dlt operon is required for D-alanylation of teichoic acids and Drosophila growth.- Deleting the pbpX2-dlt operon alters host intestinal peptidase expression.- Peptidoglycan and pbpX2-dlt dependent signals are required for LpNC8 mediated growth promotion.eTOC blurbAnimals establish interactions with their microbial communities that shape many aspects of their physiology including juvenile growth. However, the underlying molecular mechanisms are largely undefined. Matos et al. reveal that bacterial teichoic acids modifications contribute to host juvenile growth promotion.


2014 ◽  
Vol 289 (34) ◽  
pp. 23403-23416 ◽  
Author(s):  
Xiao-Hui Bai ◽  
Hui-Jie Chen ◽  
Yong-Liang Jiang ◽  
Zhensong Wen ◽  
Yubin Huang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Pan ◽  
Jing Guan ◽  
Yujie Li ◽  
Baolin Sun

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pandemics primarily consisting of skin and soft tissue infections. However, the underlying pathomechanisms of the bacterium are yet to fully understood. The present study identifies LcpB protein, which belongs to the LytR-A-Psr (LCP) family, is crucial for cell wall synthesis and virulence in S. aureus. The findings revealed that LcpB is a pyrophosphatase responsible for wall teichoic acid synthesis. The results also showed that LcpB regulates enzyme activity through specific key arginine sites in its LCP domain. Furthermore, knockout of lcpB in the CA-MRSA isolate ST59 resulted in enhanced hemolytic activity, enlarged of abscesses, and increased leukocyte infiltration. Meanwhile, we also found that LcpB regulates virulence in agr-independent manner and the key sites for pyrophosphatase of LcpB play critical roles in regulating the virulence. In addition, the results showed that the role of LcpB was different between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). This study therefore highlights the dual role of LcpB in cell wall synthesis and regulation of virulence. These insights on the underlying molecular mechanisms can thus guide the development of novel anti-infective strategies.


2016 ◽  
Vol 198 (11) ◽  
pp. 1585-1594 ◽  
Author(s):  
Jun Kasahara ◽  
Yuuka Kiriyama ◽  
Mari Miyashita ◽  
Takuma Kondo ◽  
Takeshi Yamada ◽  
...  

ABSTRACTInBacillus subtilis, thedl-endopeptidase LytE is responsible for lateral peptidoglycan hydrolysis during cell elongation. We found that σI-dependent transcription oflytEis considerably enhanced in a strain with a mutation inltaS, which encodes a major lipoteichoic acid (LTA) synthase. Similar enhancements were observed in mutants that affect the glycolipid anchor and wall teichoic acid (WTA) synthetic pathways. Immunofluorescence microscopy revealed that the LytE foci were considerably increased in these mutants. The localization patterns of LytE on the sidewalls appeared to be helix-like in LTA-defective or WTA-reduced cells and evenly distributed on WTA-depleted or -defective cell surfaces. These results strongly suggested that LTA and WTA affect both σI-dependent expression and localization of LytE. Interestingly, increased LytE localization along the sidewall in theltaSmutant largely occurred in an MreBH-independent manner. Moreover, we found that cell surface decorations with LTA and WTA are gradually reduced at increased culture temperatures and that LTA rather than WTA on the cell surface is reduced at high temperatures. In contrast, the amount of LytE on the cell surface gradually increased under heat stress conditions. Taken together, these results indicated that reductions in these anionic polymers at high temperatures might give rise to increases in SigI-dependent expression and cell surface localization of LytE at high temperatures.IMPORTANCEThe bacterial cell wall is required for maintaining cell shape and bearing environmental stresses. The Gram-positive cell wall consists of mesh-like peptidoglycan and covalently linked wall teichoic acid and lipoteichoic acid polymers. It is important to determine if these anionic polymers are required for proliferation and environmental adaptation. Here, we demonstrated that these polymers affect the expression and localization of a peptidoglycan hydrolase LytE required for lateral cell wall elongation. Moreover, we found that cell surface decorations with teichoic acid polymers are substantially decreased at high temperatures and that the peptidoglycan hydrolase is consequently increased. These findings suggest that teichoic acid polymers control lateral peptidoglycan hydrolysis by LytE, and bacteria drastically change their cell wall content to adapt to their environment.


Sign in / Sign up

Export Citation Format

Share Document