scholarly journals Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics

Soft Matter ◽  
2020 ◽  
Vol 16 (20) ◽  
pp. 4756-4766 ◽  
Author(s):  
Yi Wang ◽  
Zhen Li ◽  
Jie Ouyang ◽  
George Em Karniadakis

Thermoresponsive hydrogels have been studied intensively for creating smart drug carriers and controlled drug delivery.

2020 ◽  
Vol 26 (15) ◽  
pp. 1637-1649 ◽  
Author(s):  
Imran Ali ◽  
Sofi D. Mukhtar ◽  
Heyam S. Ali ◽  
Marcus T. Scotti ◽  
Luciana Scotti

Background: Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors that have recently been developed and recommended for use by scientists because of their potential targeting capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery. Method: The present review article provides an overview of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors. Results: This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine, personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and perspectives, biodegradability and safety. Conclusions: This article will benefit academia, researchers, clinicians, and government authorities by providing a basis for further research advancements.


2019 ◽  
Vol 45 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Jiaojiao Yu ◽  
Qiongyan Wang ◽  
Haofan Liu ◽  
Xiaosong Shan ◽  
Ziyan Pang ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Guangman Cui ◽  
Junrong Wu ◽  
Jiaying Lin ◽  
Wenjing Liu ◽  
Peixian Chen ◽  
...  

AbstractBreast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 717 ◽  
Author(s):  
Jack Campbell ◽  
Georgia Kastania ◽  
Dmitry Volodkin

Polyelectrolyte multilayer capsules (PEMCs) templated onto biocompatible and easily degradable vaterite CaCO3 crystals via the layer-by-layer (LbL) polymer deposition process have served as multifunctional and tailor-made vehicles for advanced drug delivery. Since the last two decades, the PEMCs were utilized for effective encapsulation and controlled release of bioactive macromolecules (proteins, nucleic acids, etc.). However, their capacity to host low-molecular-weight (LMW) drugs (<1–2 kDa) has been demonstrated rather recently due to a limited retention ability of multilayers to small molecules. The safe and controlled delivery of LMW drugs plays a vital role for the treatment of cancers and other diseases, and, due to their tunable and inherent properties, PEMCs have shown to be good candidates for smart drug delivery. Herein, we summarize recent progress on the encapsulation of LMW drugs into PEMCs templated onto vaterite CaCO3 crystals. The drug loading and release mechanisms, advantages and limitations of the PEMCs as LMW drug carriers, as well as bio-applications of drug-laden capsules are discussed based upon the recent literature findings.


2017 ◽  
Vol 5 (37) ◽  
pp. 7743-7755 ◽  
Author(s):  
Zoe M. Wright ◽  
Brian D. Holt ◽  
Stefanie A. Sydlik

Therapeutic methacrylic (TMA) monomers lend local, covalently-controlled release of therapeutics, tunable mechanical properties, and increased cytocompatibility to cyanoacrylate medical adhesives.


Author(s):  
Rajesh Rajput ◽  
K. M. K. Prasanna Kumar ◽  
D. S. Arya ◽  
A. K. Das ◽  
A. H. Zargar ◽  
...  

Recently, focus on the development of controlled release drug delivery system has increased, as existing drugs exhibit certain pharmacokinetic limitations. The major goal of designing sustained release formulations is to improve the drug performance by prolonged duration of drug action, decreased frequency of dosing and reduced side effects by using smallest quantity of drug administered by the most suitable route. Osmotic-controlled release oral delivery system (OSMO technology) is the most promising strategy based system for sustained delivery of drug. Drug can be delivered in a controlled manner over a long period of time by the process of osmosis. Osmotic drug delivery system appears to be a promising solution for the limitations of conventional extended release formulations by virtue of their distinguished technological features. The present review describes briefly about various controlled drug delivery systems with special focus on advantages of osmotic-controlled release oral delivery system related to diabetes therapy and improved compliance.


2013 ◽  
Vol 571 ◽  
pp. 111-132 ◽  
Author(s):  
Bhavesh D. Kevadiya ◽  
Hari C. Bajaj

Controlled drug delivery system is a protocol to develop nanostructures and materials that can efficiently encapsulate drugs at high concentration, cross the cell membrane, and release the drug at the target site in a controlled manner for a prescribed period of time. This system can reduces the patient expenses, and risks of toxicity, while it can increase the drug efficacy, specificity, tolerability and therapeutic index of corresponding drugs. Therefore, construction of stimuli-responsive controlled-release systems is of crucial importance for the development of both fundamental science and clinical medicine. Both natural and synthetic materials have been tested and proposed as components of controlled drug delivery. Clay minerals, synthetic or natural, are an important, widely abundant, and low-cost class of materials with unique swelling, intercalation, adsorption, and ion-exchange properties. The safety proof data of clay minerals clearly suggest them to be non-toxic for transdermal application and oral administration. To accomplish controlled-release systems based on layered clay minerals, one of the best ways is to intercalate organic molecules into the interlayer gallery of clay minerals. Intercalation of organic molecules within the gallery of layered silicates offers a novel route to prepare organic and inorganic hybrids that contain properties of both the inorganic host and organic guest in a single material. In this article we will highlight the applications of clay in pharmaceutics as controlled drug delivery carrier.


Sign in / Sign up

Export Citation Format

Share Document