Ultrathin RuRh@(RuRh)O2 core@shell nanosheets as stable oxygen evolution electrocatalysts

2020 ◽  
Vol 8 (31) ◽  
pp. 15746-15751 ◽  
Author(s):  
Kai Wang ◽  
Bolong Huang ◽  
Weiyu Zhang ◽  
Fan Lv ◽  
Yi Xing ◽  
...  

We report a novel architecture of ultrathin RuRh@(RuRh)O2 core/shell nanosheets with a core of ultrathin metallic RuRh nanosheets and a shell of (RuRh)O2 oxides as a superb electrocatalyst toward the oxgen evolution reaction (OER), better than most of the state-of-the-art Ru-based or Ir-based electrocatalysts. Moreover, the RuRh@(RuRh)O2 core/shell nanosheets exhibit good durability because the (RuRh)O2 oxide shell protects the normally labile RuRh NS core against dissolution during the OER process.

Author(s):  
Takahiro Naito ◽  
Tatsuya Shinagawa ◽  
Takeshi Nishimoto ◽  
Kazuhiro Takanabe

Recent spectroscopic and computational studies concerning the oxygen evolution reaction over iridium oxides are reviewed to provide the state-of-the-art understanding of its reaction mechanism.


2017 ◽  
Vol 5 (9) ◽  
pp. 4335-4342 ◽  
Author(s):  
Min Zhou ◽  
Qunhong Weng ◽  
Xiuyun Zhang ◽  
Xi Wang ◽  
Yanming Xue ◽  
...  

A novel Ni–Fe disulfide@oxyhydroxide core–shell heterostructure exhibits excellent electrochemical catalytic stability and activity for the oxygen evolution reaction (OER).


2021 ◽  
Vol 12 (06) ◽  
pp. 65-76
Author(s):  
Kieran Greer

This paper presents a batch classifier that splits a dataset into tree branches depending on the category type. It has been improved from the earlier version and fixed a mistake in the earlier paper. Two important changes have been made. The first is to represent each category with a separate classifier. Each classifier then classifies its own subset of data rows, using batch input values to create the centroid and also represent the category itself. If the classifier contains data from more than one category however, it needs to create new classifiers for the incorrect data. The second change therefore is to allow the classifier to branch to new layers when there is a split in the data, and create new classifiers there for the data rows that are incorrectly classified. Each layer can therefore branch like a tree - not for distinguishing features, but for distinguishing categories. The paper then suggests a further innovation, which is to represent some data columns with fixed value ranges, or bands. When considering features, it is shown that some of the data can be classified directly through fixed value ranges, while the rest must be classified using a classifier technique and the idea allows the paper to discuss a biological analogy with neurons and neuron links. Tests show that the method can successfully classify a diverse set of benchmark datasets to better than the state-of-the-art.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3529 ◽  
Author(s):  
Rabih Younes ◽  
Mark Jones ◽  
Thomas Martin

Most activity classifiers focus on recognizing application-specific activities that are mostly performed in a scripted manner, where there is very little room for variation within the activity. These classifiers are mainly good at recognizing short scripted activities that are performed in a specific way. In reality, especially when considering daily activities, humans perform complex activities in a variety of ways. In this work, we aim to make activity recognition more practical by proposing a novel approach to recognize complex heterogeneous activities that could be performed in a wide variety of ways. We collect data from 15 subjects performing eight complex activities and test our approach while analyzing it from different aspects. The results show the validity of our approach. They also show how it performs better than the state-of-the-art approaches that tried to recognize the same activities in a more controlled environment.


2019 ◽  
Vol 7 (38) ◽  
pp. 21722-21729 ◽  
Author(s):  
Zhengyang Cai ◽  
Xiuming Bu ◽  
Ping Wang ◽  
Wenqiang Su ◽  
Renjie Wei ◽  
...  

Meticulously designed 3D porous core–shell Ni nanochains@NiFe LDH nanosheets bifunctional electrocatalysts outperform the state-of-the-art IrO2 (+)//Pt/C (−) electrodes and most of the reported LDH electrocatalysts for overall water splitting.


2017 ◽  
Vol 5 (17) ◽  
pp. 7753-7758 ◽  
Author(s):  
Kaiyue Zhu ◽  
Huanying Liu ◽  
Mingrun Li ◽  
Xuning Li ◽  
Junhu Wang ◽  
...  

Fe3+-doped β-Ni(OH)2, prepared via an atomic-scale topochemical transformation route, exhibits much higher oxygen evolution activity than the state-of-the-art IrO2.


Author(s):  
Minghui Zhao ◽  
Tyler Chang ◽  
Aditya Arun ◽  
Roshan Ayyalasomayajula ◽  
Chi Zhang ◽  
...  

A myriad of IoT applications, ranging from tracking assets in hospitals, logistics, and construction industries to indoor tracking in large indoor spaces, demand centimeter-accurate localization that is robust to blockages from hands, furniture, or other occlusions in the environment. With this need, in the recent past, Ultra Wide Band (UWB) based localization and tracking has become popular. Its popularity is driven by its proposed high bandwidth and protocol specifically designed for localization of specialized "tags". This high bandwidth of UWB provides a fine resolution of the time-of-travel of the signal that can be translated to the location of the tag with centimeter-grade accuracy in a controlled environment. Unfortunately, we find that high latency and high-power consumption of these time-of-travel methods are the major culprits which prevent such a system from deploying multiple tags in the environment. Thus, we developed ULoc, a scalable, low-power, and cm-accurate UWB localization and tracking system. In ULoc, we custom build a multi-antenna UWB anchor that enables azimuth and polar angle of arrival (henceforth shortened to '3D-AoA') measurements, with just the reception of a single packet from the tag. By combining multiple UWB anchors, ULoc can localize the tag in 3D space. The single-packet location estimation reduces the latency of the entire system by at least 3×, as compared with state of art multi-packet UWB localization protocols, making UWB based localization scalable. ULoc's design also reduces the power consumption per location estimate at the tag by 9×, as compared to state-of-art time-of-travel algorithms. We further develop a novel 3D-AoA based 3D localization that shows a stationary localization accuracy of 3.6 cm which is 1.8× better than the state-of-the-art two-way ranging (TWR) systems. We further developed a temporal tracking system that achieves a tracking accuracy of 10 cm in mobile conditions which is 4.3× better than the state-of-the-art TWR systems.


Author(s):  
Li Rui ◽  
Zheng Shunyi ◽  
Duan Chenxi ◽  
Yang Yang ◽  
Wang Xiqi

In recent years, more and more researchers have gradually paid attention to Hyperspectral Image (HSI) classification. It is significant to implement researches on how to use HSI's sufficient spectral and spatial information to its fullest potential. To capture spectral and spatial features, we propose a Double-Branch Dual-Attention mechanism network (DBDA) for HSI classification in this paper, Two branches aer designed to extract spectral and spatial features separately to reduce the interferences between these two kinds of features. What is more, because distinguishing characteristics exist in the two branches, two types of attention mechanisms are applied in two branches above separately, ensuring to exploit spectral and spatial features more discriminatively. Finally, the extracted features are fused for classification. A series of empirical studies have been conducted on four hyperspectral datasets, and the results show that the proposed method performs better than the state-of-the-art method.


Nanoscale ◽  
2018 ◽  
Vol 10 (32) ◽  
pp. 15173-15177 ◽  
Author(s):  
Lucy Gloag ◽  
Tania M. Benedetti ◽  
Soshan Cheong ◽  
Richard F. Webster ◽  
Christopher E. Marjo ◽  
...  

Pd–Ru nanoparticles with thin shells and a stable core are shown to improve stability in oxygen evolution reaction catalysis while retaining high activity.


2005 ◽  
Vol 128 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Eric Marsh ◽  
Jeremiah Couey ◽  
Ryan Vallance

This work demonstrates the state of the art capabilities of three error separation techniques for nanometer-level measurement of precision spindles and rotationally-symmetric artifacts. Donaldson reversal is compared to a multi-probe and a multi-step technique using a series of measurements carried out on a precision aerostatic spindle with a lapped spherical artifact. The results indicate that subnanometer features in both spindle error motion and artifact form are reliably resolved by all three techniques. Furthermore, the numerical error values agree to better than one nanometer. The paper discusses several issues that must be considered when planning spindle or artifact measurements at the nanometer level.


Sign in / Sign up

Export Citation Format

Share Document