Matrix metalloproteinase-initiated aggregation of melanin nanoparticles as highly efficient contrast agent for enhanced tumor accumulation and dual-modal imaging

2020 ◽  
Vol 8 (43) ◽  
pp. 9888-9898
Author(s):  
Tingwei Meng ◽  
Bo Fan ◽  
Qian Li ◽  
Xiaoyang Peng ◽  
Jun Xu ◽  
...  

MMP2-initiated size-changeable melanin nanoparticles significantly increase the T1-weighted MRI and PA signals in vivo due to enhanced tumor accumulations.

2019 ◽  
Vol 55 (42) ◽  
pp. 5851-5854 ◽  
Author(s):  
Lianhua Liu ◽  
Yaping Yuan ◽  
Yuqi Yang ◽  
Michael T. McMahon ◽  
Shizhen Chen ◽  
...  

A fluorinated aza-BODIPY derivative BDPF was developed as a small molecule contrast agent, which displayed highly efficient near infrared fluorescence/photoacoustic/19F MR tri-modality tumor imaging.


Circulation ◽  
1995 ◽  
Vol 92 (12) ◽  
pp. 3549-3559 ◽  
Author(s):  
Tamás Simor ◽  
Wen-Jang Chu ◽  
Lynne Johnson ◽  
Andras Safranko ◽  
Mark Doyle ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yipengchen Yin ◽  
Yongjing Li ◽  
Sheng Wang ◽  
Ziliang Dong ◽  
Chao Liang ◽  
...  

Abstract Background The recently developed biomimetic strategy is one of the mostly effective strategies for improving the theranostic efficacy of diverse nanomedicines, because nanoparticles coated with cell membranes can disguise as “self”, evade the surveillance of the immune system, and accumulate to the tumor sites actively. Results Herein, we utilized mesenchymal stem cell memabranes (MSCs) to coat polymethacrylic acid (PMAA) nanoparticles loaded with Fe(III) and cypate—an derivative of indocyanine green to fabricate Cyp-PMAA-Fe@MSCs, which featured high stability, desirable tumor-accumulation and intriguing photothermal conversion efficiency both in vitro and in vivo for the treatment of lung cancer. After intravenous administration of Cyp-PMAA-Fe@MSCs and Cyp-PMAA-Fe@RBCs (RBCs, red blood cell membranes) separately into tumor-bearing mice, the fluorescence signal in the MSCs group was 21% stronger than that in the RBCs group at the tumor sites in an in vivo fluorescence imaging system. Correspondingly, the T1-weighted magnetic resonance imaging (MRI) signal at the tumor site decreased 30% after intravenous injection of Cyp-PMAA-Fe@MSCs. Importantly, the constructed Cyp-PMAA-Fe@MSCs exhibited strong photothermal hyperthermia effect both in vitro and in vivo when exposed to 808 nm laser irradiation, thus it could be used for photothermal therapy. Furthermore, tumors on mice treated with phototermal therapy and radiotherapy shrank 32% more than those treated with only radiotherapy. Conclusions These results proved that Cyp-PMAA-Fe@MSCs could realize fluorescence/MRI bimodal imaging, while be used in phototermal-therapy-enhanced radiotherapy, providing desirable nanoplatforms for tumor diagnosis and precise treatment of non-small cell lung cancer.


2021 ◽  
Vol 20 ◽  
pp. 153303382110365
Author(s):  
Lin Qiu ◽  
Shuwen Zhou ◽  
Ying Li ◽  
Wen Rui ◽  
Pengfei Cui ◽  
...  

Bifunctional magnetic/fluorescent core-shell silica nanospheres (MNPs) encapsulated with the magnetic Fe3O4 core and a derivate of 8-amimoquinoline (N-(quinolin-8-yl)-2-(3-(triethoxysilyl) propylamino) acetamide) (QTEPA) into the shell were synthesized. These functional MNPs were prepared with a modified stöber method and the formed Fe3O4@SiO2-QTEPA core-shell nanocomposites are biocompatible, water-dispersible, and stable. These prepared nanoparticles were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), thermoelectric plasma Quad II inductively coupled plasma mass spectrometry (ICP-MS), superconducting quantum interference device (SQUID), TG/DTA thermal analyzer (TGA) and Fourier transform infrared spectroscopy (FTIR). Further application of the nanoparticles in detecting Zn2+ was confirmed by the fluorescence experiment: the nanosensor shows high selectivity and sensitivity to Zn2+ with a 22-fold fluorescence emission enhancement in the presence of 10 μM Zn2+. Moreover, the transverse relaxivity measurements show that the core-shell MNPs have T2 relaxivity (r2) of 155.05 mM−1 S−1 based on Fe concentration on the 3.0 T scanner, suggesting that the compound can be used as a negative contrast agent for MRI. Further in vivo experiments showed that these MNPs could be used as MRI contrast agent. Therefore, the new nanosensor provides the dual modality of magnetic resonance imaging and optical imaging.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3532
Author(s):  
Ibrahim M. El-Deeb ◽  
Valeria Pittala ◽  
Diab Eltayeb ◽  
Khaled Greish

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of tumors that tests negative for estrogen receptors, progesterone receptors, and excess HER2 protein. The mainstay of treatment remains chemotherapy, but the therapeutic outcome remains inadequate. This paper investigates the potential of a duocarmycin derivative, tafuramycin A (TFA), as a new and more effective chemotherapy agent in TNBC treatment. To this extent, we optimized the chemical synthesis of TFA, and we encapsulated TFA in a micellar system to reduce side effects and increase tumor accumulation. In vitro and in vivo studies suggest that both TFA and SMA–TFA possess high anticancer effects in TNBC models. Finally, the encapsulation of TFA offered a preferential avenue to tumor accumulation by increasing its concentration at the tumor tissues by around four times in comparison with the free drug. Overall, the results provide a new potential strategy useful for TNBC treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1235
Author(s):  
Xiaohui Nan ◽  
Wenjia Lai ◽  
Dan Li ◽  
Jiesheng Tian ◽  
Zhiyuan Hu ◽  
...  

Derived from magnetotactic bacteria (MTB), magnetosomes consist of magnetite crystals enclosed within a lipid bilayer membrane and are known to possess advantages over artificially synthesized nanoparticles because of the narrow size distribution, uniform morphology, high purity and crystallinity, single magnetic domain, good biocompatibility, and easy surface modification. These unique properties have increasingly attracted researchers to apply bacterial magnetosomes (BMs) in the fields of biology and medicine as MRI imaging contrast agents. Due to the concern of biosafety, a long-term follow-up of the distribution and clearance of BMs after entering the body is necessary. In this study, we tracked changes of BMs in major organs of mice up to 135 days after intravenous injection using a combination of several techniques. We not only confirmed the liver as the well-known targeted organs of BMs, but also found that BMs accumulated in the spleen. Besides, two major elimination paths, as well as the approximate length of time for BMs to be cleared from the mice, were revealed. Together, the results not only confirm that BMs have high biocompatibility, but also provide a long-term in-vivo assessment which may further help to forward the clinical applications of BMs as an MRI contrast agent.


2021 ◽  
Author(s):  
Chao Zhang ◽  
Xusheng Guo ◽  
Xuwen Da ◽  
Yishan Yao ◽  
Haihua Xiao ◽  
...  

Ru(II)-based photoactivated chemotherapy (PACT) agents are promising, however, the short wavelength absorption (generally < 550 nm) and poor tumor accumulation ability limit their in vivo applications. Herein bovine serum albumin...


Sign in / Sign up

Export Citation Format

Share Document