scholarly journals Facile synthesis of BiSI and Bi13S18I2 as stable electrode materials for supercapacitor applications

2020 ◽  
Vol 8 (38) ◽  
pp. 13253-13262
Author(s):  
Huapeng Sun ◽  
Guiling Yang ◽  
Jie Chen ◽  
Caroline Kirk ◽  
Neil Robertson

In this paper, we demonstrate a novel synthetic route of two bismuth chalcogenide materials 3-D hexagonal Bi13S18I2 and 3-D orthorhombic BiSI, and investigate their potential as the active electrode material for supercapacitors.

2019 ◽  
Vol 7 (4) ◽  
pp. 1638-1646 ◽  
Author(s):  
Keir Adams ◽  
Alba Franco González ◽  
John Mallows ◽  
Tianyue Li ◽  
Job H. J. Thijssen ◽  
...  

We demonstrate a novel synthetic route to films of a bismuth chalcohalide, Bi13S18I2, and investigate its potential as the active electrode material in EDLC-type supercapacitors.


2021 ◽  
Vol 3 ◽  
Author(s):  
Subash Pandey ◽  
Shova Neupane ◽  
Dipak Kumar Gupta ◽  
Anju Kumari Das ◽  
Nabin Karki ◽  
...  

In this study, we report on a combined approach to preparing an active electrode material for supercapattery application by making nanocomposites of Polyaniline/Cerium (PANI/Ce) with different weight percentages of magnetite (Fe3O4). Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses supported the interaction of PANI with Ce and the formation of the successful nanocomposite with magnetite nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed the uniform and porous morphology of the composites. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) were used to test the supercapattery behavior of the nanocomposite electrodes in 1.0 M H2SO4. It was found that the supercapattery electrode of PANI/Ce+7 wt.% Fe3O4 exhibited a specific capacity of 171 mAhg−1 in the potential range of −0.2 to 1.0 V at the current density of 2.5 Ag−1. Moreover, PANI/Ce+7 wt.% Fe3O4 revealed a power density of 376.6 Wkg−1 along with a maximum energy density of 25.4 Whkg−1 at 2.5 Ag−1. Further, the cyclic stability of PANI/Ce+7 wt.% Fe3O4 was found to be 96.0% after 5,000 cycles. The obtained results suggested that the PANI/Ce+Fe3O4 nanocomposite could be a promising electrode material candidate for high-performance supercapattery applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2195
Author(s):  
Kannadasan Thiagarajan ◽  
Dhandapani Balaji ◽  
Jagannathan Madhavan ◽  
Jayaraman Theerthagiri ◽  
Seung Jun Lee ◽  
...  

In the present study, the synthesis of CoWO4 (CWO)–Ni nanocomposites was conducted using a wet chemical method. The crystalline phases and morphologies of the Ni nanoparticles, CWO, and CWO–Ni composites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDAX). The electrochemical properties of CWO and CWO–Ni composite electrode materials were assessed by cyclic voltammetry (CV), and galvanostatic charge–discharge (GCD) tests using KOH as a supporting electrolyte. Among the CWO–Ni composites containing different amounts of Ni1, Ni2, and Ni3, CWO–Ni3 exhibited the highest specific capacitance of 271 F g−1 at 1 A g−1, which was greater than that of bare CWO (128 F g−1). Moreover, the CWO–Ni3 composite electrode material displayed excellent reversible cyclic stability and maintained 86.4% of its initial capacitance after 1500 discharge cycles. The results obtained herein demonstrate that the prepared CWO–Ni3 nanocomposite is a promising electrode candidate for supercapacitor applications.


RSC Advances ◽  
2019 ◽  
Vol 9 (37) ◽  
pp. 21225-21232
Author(s):  
Yedluri Anil Kumar ◽  
Araveeti Eswar Reddy ◽  
Jin-Soo Bak ◽  
In-Ho Cho ◽  
Hee-Je Kim

NF/ZnOx nanocone and NF/CoOx nanoparticle electrode materials were fabricated on a nickel foam surface using a simple chemical bath deposition approach and assessed as an electrode material for high-performance supercapacitors.


Author(s):  
Huapeng Sun ◽  
Xufeng Xiao ◽  
Veronica Celorrio ◽  
Zhenfu Guo ◽  
Yue Hu ◽  
...  

In this paper, we demonstrate a novel synthetic route to assemble reduced graphene oxide (rGO) uniformly coated on BiSI composite and investigate its potential as the active electrode material for...


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 788
Author(s):  
Xin Guan ◽  
Lujun Pan ◽  
Zeng Fan

Lightweight energy storage devices with high mechanical flexibility, superior electrochemical properties and good optical transparency are highly desired for next-generation smart wearable electronics. The development of high-performance flexible and transparent electrodes for supercapacitor applications is thus attracting great attention. In this work, we successfully developed flexible, transparent and highly conductive film electrodes based on a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS film electrodes were prepared via a simple spin-coating approach followed by a post-treatment with a salt solution. After treatment, the film electrodes achieved a high areal specific capacitance (3.92 mF/cm2 at 1 mA/cm2) and long cycling lifetime (capacitance retention >90% after 3000 cycles) with high transmittance (>60% at 550 nm). Owing to their good optoelectronic and electrochemical properties, the as-assembled all-solid-state device for which the PEDOT:PSS film electrodes were utilized as both the active electrode materials and current collectors also exhibited superior energy storage performance over other PEDOT-based flexible and transparent symmetric supercapacitors in the literature. This work provides an effective approach for producing high-performance, flexible and transparent polymer electrodes for supercapacitor applications. The as-obtained polymer film electrodes can also be highly promising for future flexible transparent portable electronics.


2014 ◽  
Vol 2 (47) ◽  
pp. 20075-20082 ◽  
Author(s):  
Jeong-Uk Seo ◽  
Cheol-Min Park

ZnTe and a nanostructured ZnTe/C composite were prepared by a simple solid-state synthetic route, and their potential as electrode materials for rechargeable Li-ion batteries was investigated.


Sign in / Sign up

Export Citation Format

Share Document