Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management

Author(s):  
Li-Chuan Jia ◽  
Yi-Fei Jin ◽  
Jun-Wen Ren ◽  
Li-Hua Zhao ◽  
Ding-Xiang Yan ◽  
...  

Mechanically strong and thermostable composites are prepared for thermal management based on soft liquid metal and rigid aramid nanofibers.

2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Shengfu Mei ◽  
Yunxia Gao ◽  
Zhongshan Deng ◽  
Jing Liu

Thermal grease, as a thermal interface material (TIM), has been extensively applied in electronic packaging areas. Generally, thermal greases consist of highly thermally conductive solid fillers and matrix material that provides good surface wettability and compliance of the material during application. In this study, the room-temperature liquid metal (a gallium, indium and tin eutectic, also called Galinstan) was proposed as a new kind of liquid filler for making high performance TIMs with desired thermal and electrical behaviors. Through directly mixing and stirring in air, liquid metal micron-droplets were accidentally discovered capable to be homogeneously distributed and sealed in the matrix of methyl silicone oil. Along this way, four different volume ratios of the liquid metal poly (LMP) greases were fabricated. The thermal and electrical properties of the LMP greases were experimentally investigated, and the mechanisms were clarified by analyzing their surface morphologies. The experimental results indicate that the original highly electrically conductive liquid metal can be turned into a highly electrically resistive composite, by simply blending with methyl silicone oil. When the filler content comes up to 81.8 vol. %, the thermal conductivity, viscosity and volume resistivity read 5.27 W/(m · °C), 760 Pa · s and 1.07 × 107 Ω m, respectively. Furthermore, the LMP greases presented no obvious corrosion effect, compared with pure liquid metal. This study opens a new approach to flexibly modify the material behaviors of the room-temperature liquid metals. The resulted thermally conductive however highly electrically resistive LMP greases can be significant in a wide variety of electronic packaging applications.


Small ◽  
2021 ◽  
pp. 2104762
Author(s):  
Ethan J. Krings ◽  
Haipeng Zhang ◽  
Suchit Sarin ◽  
Jeffery E. Shield ◽  
Sangjin Ryu ◽  
...  

Author(s):  
Jing Liu ◽  
Yue-Guang Deng ◽  
Zhong-Shan Deng

Efficient cooling of a high performance computer chip has been an extremely important however becoming more and more tough issue. The recently invented liquid metal cooling method is expected to pave the way for high flux heat dissipation which is hard to tackle otherwise by many existing conventional cooling strategies. However, as a new thermal management method, its application also raised quite a few challenging fundamental and practical issues for solving. To illustrate the development of the new technology, this talk is dedicated to present an overview on the latest advancements made in the author’s lab in developing the new generation chip cooling device based on the liquid metal coolant with melting point around room temperature. The designing and optimization of the cooling device and component will be discussed. Several major barriers to prevent the new method from practical application such as erosion between liquid metal coolant and its substrate material will be outlined with good solutions clarified. Performance comparison between the new chip cooling method with commercially available products with highest quality such as air cooling, water cooling and heat pipe cooling devices were evaluated. Typical examples of using liquid metal cooling for the thermal management of a real PC or even super computer will be demonstrated. Further, miniaturizations on the prototype device by extending it as a MEMS cooling device or mini/micro channel liquid metal cooling device will also be explained. Along with the development of the hardware, some fundamental heat transfer issues in characterizing the liquid metal cooling device will be discussed through numerical or analytical model. Future challenging issues in pushing the new technology into large scale practices will be raised. From all the outputs obtained so far, it can be clearly seen that the new cooling strategy will find very promising and significant applications in a wide variety of engineering situations whenever thermal managements or heat transport are needed.


Author(s):  
Tianyu Yang ◽  
Thomas Foulkes ◽  
Beomjin Kwon ◽  
Jin Gu Kang ◽  
Paul V. Braun ◽  
...  

2021 ◽  
Vol 16 (2) ◽  
pp. 042-047
Author(s):  
Yanfei Bian ◽  
SHI Jian-zhou ◽  
XIE Ming-jun ◽  
CAI Meng

Annealed pyrolytic graphite (APG) is a material with thermal conductivity of about 1500 W/(m·K). This property may enable the usage of APG’s thermal potential to develop highly thermally conductive composites for devices requiring effective thermal management. In this paper, APG has been encapsulated in aluminum by brazing, and the thermal properties of Al-APG composite baseplates were measured. The results show that the thermal conductivity of the Al-APG composite baseplates is about 620 W/(m·K), which is four times higher than the pure aluminum plate (152 W/(m·K)).


Author(s):  
Na Song ◽  
Donglei Cao ◽  
Xian Luo ◽  
Qi Wang ◽  
Peng Ding ◽  
...  

Author(s):  
Austin Smith ◽  
Hamzeh Bardaweel

In this work a flexible strain sensor is fabricated using Fused Deposition Modeling (FDM) 3D printing technique. The strain sensor is fabricated using commercially available flexible Thermoplastic Polyurethane (TPU) filaments and liquid metal Galinstan Ga 68.5% In 21% Sn 10%. The strain sensor consists of U-shape 2.34mm long and 0.2mm deep channels embedded inside a TPU 3D printed structure. The performance of the strain sensor is measured experimentally. Gauge Factor is estimated by measuring change in electric resistance when the sensor is subject to 13.2% – 38.6% strain. Upon straining and unstraining, results from characterization tests show high linearity in the range of 13.2% to 38.6% strain with very little hysteresis. However, changes due to permanent deformations are a limiting factor in the usefulness of these sensors because these changes limit the consistency of the device. FDM 3D printing shows promise as a method for fabricating flexible strain sensors. However, more investigation is needed to look at the effects of geometries and 3D printing process parameters on the yield elongation of the flexible filaments. Additionally, more investigation is needed to observe the effect of distorted dimensions of the 3D printed channels on the sensitivity of the strain sensor. It is anticipated that successful implementation of these commercially available filaments and FDM 3D printers will lead to reduction in cost and complexity of developing these flexible sensors.


Sign in / Sign up

Export Citation Format

Share Document