Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil

2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Shengfu Mei ◽  
Yunxia Gao ◽  
Zhongshan Deng ◽  
Jing Liu

Thermal grease, as a thermal interface material (TIM), has been extensively applied in electronic packaging areas. Generally, thermal greases consist of highly thermally conductive solid fillers and matrix material that provides good surface wettability and compliance of the material during application. In this study, the room-temperature liquid metal (a gallium, indium and tin eutectic, also called Galinstan) was proposed as a new kind of liquid filler for making high performance TIMs with desired thermal and electrical behaviors. Through directly mixing and stirring in air, liquid metal micron-droplets were accidentally discovered capable to be homogeneously distributed and sealed in the matrix of methyl silicone oil. Along this way, four different volume ratios of the liquid metal poly (LMP) greases were fabricated. The thermal and electrical properties of the LMP greases were experimentally investigated, and the mechanisms were clarified by analyzing their surface morphologies. The experimental results indicate that the original highly electrically conductive liquid metal can be turned into a highly electrically resistive composite, by simply blending with methyl silicone oil. When the filler content comes up to 81.8 vol. %, the thermal conductivity, viscosity and volume resistivity read 5.27 W/(m · °C), 760 Pa · s and 1.07 × 107 Ω m, respectively. Furthermore, the LMP greases presented no obvious corrosion effect, compared with pure liquid metal. This study opens a new approach to flexibly modify the material behaviors of the room-temperature liquid metals. The resulted thermally conductive however highly electrically resistive LMP greases can be significant in a wide variety of electronic packaging applications.

2015 ◽  
Vol 815 ◽  
pp. 217-221
Author(s):  
Ling Li Xu ◽  
Xing Ling Shi ◽  
Qing Liang Wang

nanocrystalline cellulose (NCC) was prepared from micro-crystalline cellulose (MCC) by strong acid hydrolysis. The characteristics of such particle were studied by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Electro-rheological fluids (ERF) were prepared by dispersing NCC and MCC in methyl-silicone oil, and their ER effects were measured. Experimental results indicated that NCC ERF exhibited a remarkable ER effect. The highest static shearing stress of NCC ERF (3.5 g/ml) was 5.1 kPa at the room temperature under a 4 .2 kV/mm electric field, increased about 5.5 times compared to MCC ERF, and sedimentation of NCC ERF was not observed even after 60 days.


2018 ◽  
Vol 122 (46) ◽  
pp. 26393-26400 ◽  
Author(s):  
Zachary J. Farrell ◽  
Nina Reger ◽  
Ian Anderson ◽  
Ellen Gawalt ◽  
Christopher Tabor

2021 ◽  
pp. 103062
Author(s):  
Honghao Liu ◽  
Weixin Zhang ◽  
Ji Tu ◽  
Qigao Han ◽  
Yaqing Guo ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2639 ◽  
Author(s):  
James P. Wissman ◽  
Kaushik Sampath ◽  
Simon E. Freeman ◽  
Charles A. Rohde

Submersible robotics have improved in efficiency and versatility by incorporating features found in aquatic life, ranging from thunniform kinematics to shark skin textures. To fully realize these benefits, sensor systems must be incorporated to aid in object detection and navigation through complex flows. Again, inspiration can be taken from biology, drawing on the lateral line sensor systems and neuromast structures found on fish. To maintain a truly soft-bodied robot, a man-made flow sensor must be developed that is entirely complaint, introducing no rigidity to the artificial “skin.” We present a capacitive cupula inspired by superficial neuromasts. Fabricated via lost wax methods and vacuum injection, our 5 mm tall device exhibits a sensitivity of 0.5 pF/mm (capacitance versus tip deflection) and consists of room temperature liquid metal plates embedded in a soft silicone body. In contrast to existing capacitive examples, our sensor incorporates the transducers into the cupula itself rather than at its base. We present a kinematic theory and energy-based approach to approximate capacitance versus flow, resulting in equations that are verified with a combination of experiments and COMSOL simulations.


Soft Matter ◽  
2020 ◽  
Vol 16 (25) ◽  
pp. 5801-5805
Author(s):  
Wilson Kong ◽  
Najam Ul Hassan Shah ◽  
Taylor V. Neumann ◽  
Man Hou Vong ◽  
Praveen Kotagama ◽  
...  

The fracturing and incorporation of liquid gallium surface oxides during shear mixing in air enables the stabilization of air bubbles within gallium which leads to the formation of a room-temperature liquid metal foam.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qinwu Gao ◽  
Hui Li ◽  
Jinjie Zhang ◽  
Zhenwen Xie ◽  
Jinyong Zhang ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 366-372 ◽  
Author(s):  
Frank F Yun ◽  
Zhenwei Yu ◽  
Yahua He ◽  
Lei Jiang ◽  
Zhao Wang ◽  
...  

Abstract Room-temperature liquid metal is discovered to be capable of penetrating through macro- and microporous materials by applying a voltage. The liquid metal penetration effects are demonstrated in various porous materials such as tissue paper, thick and fine sponges, fabrics, and meshes. The underlying mechanism is that the high surface tension of liquid metal can be significantly reduced to near-zero due to the voltage-induced oxidation of the liquid metal surface in a solution. It is the extremely low surface tension and gravity that cause the liquid metal to superwet the solid surface, leading to the penetration phenomena. These findings offer new opportunities for novel microfluidic applications and could promote further discovery of more exotic fluid states of liquid metals.


Sign in / Sign up

Export Citation Format

Share Document