Development of a PANI/Fe(NO3)2 nanomaterial for reactive orange 16 (RO16) dye removal

2021 ◽  
Author(s):  
Tanvir Arfin ◽  
Dipti A. Bhaisare ◽  
S. S. Waghmare

Polyaniline–iron(ii) nitrate was prepared by the polymerization of aniline hydrochloride with Fe(NO3)2.

Author(s):  
Megat Ahmad Kamal Megat Hanafiah ◽  
Shariff Ibrahim ◽  
Nur Izah Fasihah Mohamad Subberi ◽  
Nesamalar Kantasamy ◽  
Is Fatimah

The feasibility of Mengkuang leaves (Pandanus atrocarpus) as a non-conventional low-cost adsorbent for the removal of an anionic dye, Reactive Orange 16 (RO16), was investigated. Among the dyes that have been commonly used in the Batik industry was reactive dye. In this study, Mengkuang leaves were chemically modified with cetyltrimethylammonium bromide (CTAB), a cationic surfactant, to improve their adsorption performance toward anionic dyes. The adsorbent’s morphological characteristics were analyzed using a scanning electron microscope (SEM). The surface of modified Mengkuang leaves seems to be irregular and uneven, with more porous structures than raw Mengkuang leaves. Adsorption of RO16 dye in fixed bed column using modified Mengkuang leaves adsorbent indicated the breakthrough time increased at higher bed height and lower flow rate. The breakthrough times for bed height of 0.5, 2, and 4 cm were at 16, 68, and 165 min, respectively. Meanwhile, breakthrough time for the flow rate of 2,5 and 7 mL.min-1 were at 327, 104, and 43 min, respectively. However, the study utilizing raw Mengkuang leaves showed no significant removal of RO16. Thus, it can be concluded that the cationic surfactant modification of Mengkuang leaves is advantageous for anionic dye removal. This anionic dye removal is significantly influenced by column parameters such as bed height and flow rate as the plotted breakthrough curves obtained from experimental data were similar to the typical breakthrough curve. When applied to the Yoon-Nelson model, the adsorption data provided the best fit with the R2 value above 0.95. The time taken for the breakthrough is very similar to model prediction values. Experiments with real batik dye wastewater showed the immense potential of modified Mengkuang leaves where total removal of real Batik wastewater was instantaneous.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2005 ◽  
Author(s):  
Shoujuan Wang ◽  
Fangong Kong ◽  
Pedram Fatehi ◽  
Qingxi Hou

The presence of dyes in wastewater effluents made from the textile industry is a major environmental problem due to their complex structure and poor biodegradability. In this study, a cationic lignin polymer was synthesized via the free radical polymerization of lignin with [2-(methacryloyloxy) ethyl] trimethyl ammonium chloride (METAC) and used to remove anionic azo-dyes (reactive black 5, RB5, and reactive orange 16, RO16) from simulated wastewater. The effects of pH, salt, and concentration of dyes, as well as the charge density and molecular weight of lignin-METAC polymer on dye removal were examined. Results demonstrated that lignin-METAC was an effective flocculant for the removal of dye via charge neutralization and bridging mechanisms. The dye removal efficiency of lignin-METAC polymer was independent of pH. The dosage of the lignin polymer required for reaching the maximum removal had a linear relationship with the dye concentration. The presence of inorganic salts including NaCl, NaNO3, and Na2SO4 had a marginal effect on the dye removal. Under the optimized conditions, greater than 98% of RB5 and 94% of RO16 were removed at lignin-METAC concentrations of 120 mg/L and 105 mg/L in the dye solutions, respectively.


2020 ◽  
Vol 1529 ◽  
pp. 052003
Author(s):  
Manassvinee Gunasegaran ◽  
Suganthi Ravi ◽  
Noor Fazliani Shoparwe

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maryam Sadat Seyedi ◽  
Mahmoud Reza Sohrabi ◽  
Fereshteh Motiee ◽  
Saeid Mortazavinik

Purpose The purpose of this paper is to analyze nano zero-valent iron (nZVI)-activated carbon/Nickel (nZVI-AC/Ni) by a novel method. The synthesized adsorbent was used to degrade reactive orange 16 (RO 16) azo dye. Design/methodology/approach The optimum conditions for the highest removal of RO 16 dye were determined. Characterization of nZVI-AC/Ni was done by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The nZVI-AC/Ni were used for the removal of dye RO 16 and the parameters affecting were discussed such as pH, adsorbent dosage, contact time and concentration of dye. To investigate the variables and interaction between them, an analysis of variance test was performed. Findings The characterization results show that the synthesis of nZVI-AC/Ni caused no aggregation of nanoparticles. The maximum dye removal efficiency of 99.45% occurred at pH 4, the adsorbent dosage = 0.1 gL-1 and the dye concentration of 10 mgL-1. Among various algorithms of feed-forward backpropagation neural network, Levenberg–Marquardt with mean square error (MSE) = 9.86 × 10–22 in layer = 5 and the number of neurons = 9 was selected as the best algorithm. On the other hand, the MSE of the radial basis function model was 0.2159 indicating the good ability of the model to predict the percentage of dye removal. Originality/value There are two main innovations. One is that the novel nZVI-AC/Ni was prepared successfully. The other is that the optimized conditions were obtained for the removal of RO 16 dye from an aqueous solution. Furthermore, to the best of the knowledge, no study has ever investigated the removal of RO 16 by nZVI-AC/Ni produced.


2020 ◽  
Vol 31 (5) ◽  
pp. 1891-1902 ◽  
Author(s):  
Mochamad Solehudin ◽  
Uraiwan Sirimahachai ◽  
Gomaa A.M. Ali ◽  
Kwok Feng Chong ◽  
Sumpun Wongnawa

2021 ◽  
pp. 100726
Author(s):  
F. Ruscasso ◽  
I. Cavello ◽  
M. Butler ◽  
E. Lopez Loveira ◽  
G. Curutchet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document