scholarly journals Application of Cationic Surfactant Modified Mengkuang Leaves (Pandanus atrocapus) for the Removal of Reactive Orange 16 from Batik Wastewater: A Column Study

Author(s):  
Megat Ahmad Kamal Megat Hanafiah ◽  
Shariff Ibrahim ◽  
Nur Izah Fasihah Mohamad Subberi ◽  
Nesamalar Kantasamy ◽  
Is Fatimah

The feasibility of Mengkuang leaves (Pandanus atrocarpus) as a non-conventional low-cost adsorbent for the removal of an anionic dye, Reactive Orange 16 (RO16), was investigated. Among the dyes that have been commonly used in the Batik industry was reactive dye. In this study, Mengkuang leaves were chemically modified with cetyltrimethylammonium bromide (CTAB), a cationic surfactant, to improve their adsorption performance toward anionic dyes. The adsorbent’s morphological characteristics were analyzed using a scanning electron microscope (SEM). The surface of modified Mengkuang leaves seems to be irregular and uneven, with more porous structures than raw Mengkuang leaves. Adsorption of RO16 dye in fixed bed column using modified Mengkuang leaves adsorbent indicated the breakthrough time increased at higher bed height and lower flow rate. The breakthrough times for bed height of 0.5, 2, and 4 cm were at 16, 68, and 165 min, respectively. Meanwhile, breakthrough time for the flow rate of 2,5 and 7 mL.min-1 were at 327, 104, and 43 min, respectively. However, the study utilizing raw Mengkuang leaves showed no significant removal of RO16. Thus, it can be concluded that the cationic surfactant modification of Mengkuang leaves is advantageous for anionic dye removal. This anionic dye removal is significantly influenced by column parameters such as bed height and flow rate as the plotted breakthrough curves obtained from experimental data were similar to the typical breakthrough curve. When applied to the Yoon-Nelson model, the adsorption data provided the best fit with the R2 value above 0.95. The time taken for the breakthrough is very similar to model prediction values. Experiments with real batik dye wastewater showed the immense potential of modified Mengkuang leaves where total removal of real Batik wastewater was instantaneous.

2013 ◽  
Vol 68 (10) ◽  
pp. 2294-2300 ◽  
Author(s):  
Jianfei Liu ◽  
Jiajun Chen ◽  
Lin Jiang ◽  
Cheng Chen

The adsorption behavior of phenanthrene (PHE) in Triton X-100 (TX100) solutions with fixed activated carbon (AC) bed was studied to recover the surfactant. The effect of various parameters like bed depths, flow rates, influent TX100 concentration, and influent PHE concentration were investigated. The breakthrough time of both TX100 and PHE increased with the increase of bed height and decrease of flow rate and influent concentration. In the case of fixed length, a lower flow rate, higher concentration of TX100, and lower concentration of PHE will benefit the longer effective surfactant recovery time. The adsorption data were integrated into bed depth service time models. The height of exchange zone of TX100 should be much shorter than that of PHE, which provides conditions to separate the hydrophobic organic compound from surfactant solutions with AC in a fixed bed. It is likely that the adsorption process is controlled by hydrophobic interaction.


2018 ◽  
Vol 18 (2) ◽  
pp. 294 ◽  
Author(s):  
Amina Abdel Meguid Attia ◽  
Mona Abdel Hamid Shouman ◽  
Soheir Abdel Atty Khedr ◽  
Nevin Ahmed Hassan

The goal of this article describes the potential of utilizing jojoba leaves and also modified with chitosan as an efficient adsorption materials for Congo red dye removal in a fixed-bed column. Inlet dye concentration, feed flow rate and bed height had a great influence on determining the breakthrough curves. The percentage dye removal was found to be approximately 69% of coated jojoba leaves with flow rate 3 mL/min, initial concentration 50 mg/L and 4 cm bed height. The dye uptake capacity at equilibrium (qe) for coated jojoba leaves showed higher values than that found for jojoba leaves. On this basis, this implies that the amino groups played an important role during the adsorption process. Breakthrough curves were satisfactorily in good agreement with both Thomas and Yoon-Nelson models based on the values of correlation coefficient (R2 ≥ 96).This study serves as a good fundamental aspect of wastewater purification on jojoba leaves as a novel adsorbent for the uptake of Congo red dyes from aqueous solution in a column system.


2020 ◽  
Vol 9 (2) ◽  
pp. 5-13
Author(s):  
Dragana Marković-Nikolić ◽  
Goran Petković ◽  
Nebojša Ristić ◽  
Danijela Bojić ◽  
Miloš Durmišević ◽  
...  

A fixed bed column was applied to remove nitrate ions from an aqueous solution using a cationic modified pumpkin shell as a sorbent. The fixed bed column performances were assessed by varying the influent nitrate concentrations (50 mg dm-3 and 100 mg dm-3) and flow rates (20 cm 3 min-1 and 40 cm 3 min-1) with 13 cm bed height of the sorbent. The obtained results showed that increase of the concentration of the initial nitrate solution affects the increase in the amount of nitrate in the effluent and reduces the breakthrough time. A higher flow rate led to the faster column exhaustion, resulting in the shortened lifespan of the column. In this study, the best nitrate removal was achieved for an initial nitrate solution of 100 mg dm-3 at the flow rate of 20 cm 3 min-1 , when a total nitrate removal of 86% is reached. The relationship between the sorption capacity of this sorbent and the varied parameters was assessed and predicted using two different theoretical breakthrough curve models: the Thomas and Yoon-Nelson models. This study confirmed that the cationic modified pumpkin shell in the fixed bed column has good potential for removing nitrate from aqueous solutions.


2014 ◽  
Vol 665 ◽  
pp. 491-494 ◽  
Author(s):  
Jia Jia Wang ◽  
Hui Huang ◽  
Jun Wei Wang ◽  
Shi Ying Tao

Porous starch was prepared by replacing ice crystals in frozen starch gel with ethanol using a solvent exchange method. Porous starch was packed in a laboratory scale fixed-bed column to continuous remove Methylene Blue (MB) from aqueous solution through adsorption. The effects of bed height, feed flow rate and initial MB concentration on the breakthrough time were investigated. The breakthrough time decreased with increase in the flow rate and initial MB concentration, and also varied with the change in bed height. Bed Depth Service Time (BDST) model was used to determine the column kinetic parameters, and showed good agreement with the experimental data.


2021 ◽  
Author(s):  
Tanvir Arfin ◽  
Dipti A. Bhaisare ◽  
S. S. Waghmare

Polyaniline–iron(ii) nitrate was prepared by the polymerization of aniline hydrochloride with Fe(NO3)2.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 215-232 ◽  
Author(s):  
Jaime López-Cervantes ◽  
Dalia I Sánchez-Machado ◽  
Reyna G Sánchez-Duarte ◽  
Ma A Correa-Murrieta

A continuous adsorption study in a fixed-bed column was carried out using a chitosan–glutaraldehyde biosorbent for the removal of the textile dye Direct Blue 71 from an aqueous solution. The biosorbent was prepared from shrimp shells and characterized by scanning electron microscopy, X-ray diffraction, and nuclear magnetic resonance spectroscopy. The effects of chitosan–glutaraldehyde bed height (3–12 cm), inlet Direct Blue 71 concentration (15–50 mg l−1), and feed flow rate (1–3 ml min−1) on the column performance were analyzed. The highest bed capacity of 343.59 mg Direct Blue 71 per gram of chitosan–glutaraldehyde adsorbent was obtained using 1 ml min−1 flow rate, 50 mg l−1 inlet Direct Blue 71 concentration, and 3 cm bed height. The breakthrough curve was analyzed using the Adams–Bohart, Thomas, and bed depth service time mathematical models. The behaviors of the breakthrough curves were defined by the Thomas model at different conditions. The bed depth service time model showed good agreement with the experimental data, and the high values of correlation coefficients (R2 ≥ 0.9646) obtained indicate the validity of the bed depth service time model for the present column system.


2021 ◽  
Author(s):  
Junxiu Ye ◽  
Min Yang ◽  
Xuemei Ding ◽  
Wei Tan ◽  
Guizhen Li ◽  
...  

Abstract A continuous fixed-bed column study has been used to evaluate phosphate adsorption performance of U-D-Na which was functionalized by the cheap NaCl reagent after simple ultrasonic purification of diatomite. Experimentally, various effect factors, the flow rate, the initial phosphate concentration, and the bed height on breakthrough time of fixed column were studied. Experimental results showed that the breakthrough time declined with the increase of inlet phosphorous concentration and feed rate, whereas the increase of bed height turned out to significantly prolong the breakthrough time. The dynamic adsorption data could better be fitted by the Thomas model, with the correlation coefficients obtained, R2 > 0.9000 at the majority of operating conditions (5/7). At least thrice loop of adsorption and desorption was achieved with 0.1 M hydrochloric acid eluent and deionized water. The results proved that U-D-Na could be used as a better alternative phosphate adsorbent from wastewater in a continuous column process.


2017 ◽  
Vol 18 (2) ◽  
pp. 94-104
Author(s):  
Rozaimi Abu Samah

The main objective of this work was to design and model fixed bed adsorption column for the adsorption of vanillin from aqueous solution. Three parameters were evaluated for identifying the performance of vanillin adsorption in fixed-bed mode, which were bed height, vanillin initial concentration, and feed flow rate. The maximum adsorption capacity was increased more than threefold to 314.96 mg vanillin/g resin when the bed height was increased from 5 cm to 15 cm. Bohart-Adams model and Belter equation were used for designing fixed-bed column and predicting the performance of the adsorption process. A high value of determination coefficient (R2) of 0.9672 was obtained for the modelling of vanillin adsorption onto resin H103.


Sign in / Sign up

Export Citation Format

Share Document