Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances

2021 ◽  
Author(s):  
Aishik Chakraborty ◽  
Avinava Roy ◽  
Shruthi Polla Ravi ◽  
Arghya Paul

Three-dimensional (3D) bioprinting is an emerging tissue engineering approach that aims to develop cell or biomolecule-laden, complex polymeric scaffolds with high precision, using hydrogel-based “bioinks”. Hydrogels are water-swollen, highly crosslinked...

2021 ◽  
Author(s):  
Andrea S. Theus ◽  
Liqun Ning ◽  
Linqi Jin ◽  
Ryan K. Roeder ◽  
Jianyi Zhang ◽  
...  

Abstract Three-dimensional (3D) bioprinting is rapidly evolving, offering great potential for manufacturing functional tissue analogs for use in diverse biomedical applications, including regenerative medicine, drug delivery, and disease modeling. Biomaterials used as bioinks in printing processes must meet strict physiochemical and biomechanical requirements to ensure adequate printing fidelity, while closely mimicking the characteristics of the native tissue. To achieve this goal, nanomaterials are increasingly being investigated as a robust tool to functionalize bioink materials. In this review, we discuss the growing role of different nano-biomaterials in engineering functional bioinks for a variety of tissue engineering applications. The development and commercialization of these nanomaterial solutions for 3D bioprinting would be a significant step towards clinical translation of biofabrication.


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
F Moura ◽  
R Varley ◽  
C Yao

Abstract Aim Despite several decades of research in tissue engineering, reconstructing a 3D human-sized ear that can stand the test of time has remained a challenge. Autologous cartilage reconstruction remains the main treatment choice despite the associated morbidity. Progress in the field has been made and several studies have used tissue-engineered implants in immunocompetent animals with promising results. Method This study critically reviews and assesses the characteristics that make auricular reconstruction so challenging and how far research has come in addressing the following: mechanical properties; vascularisation; immune response; cell sourcing; surgical attachments; allografts; and cost. Results The question is whether tissue engineering will realistically replace autologous cartilage reconstruction in the short-term, or will advances in other areas, outlined in this article, manage to provide suitable and aesthetically accurate scaffolds. Conclusions Advances in tissue engineering are slowly progressing and utilise advances in both biomaterial design and 3D bioprinting to try and address the challenges of auricular reconstruction. Tissue engineering is still a promising solution to auricular reconstruction but still requires further research before becoming a reality.


2021 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ahmed Fatimi

There are a variety of hydrogel-based bioinks commonly used in three-dimensional bioprinting. In this study, in the form of patent analysis, the state of the art has been reviewed by introducing what has been patented in relation to hydrogel-based bioinks. Furthermore, a detailed analysis of the patentability of the used hydrogels, their preparation methods and their formulations, as well as the 3D bioprinting process using hydrogels, have been provided by determining publication years, jurisdictions, inventors, applicants, owners, and classifications. The classification of patents reveals that most inventions intended for hydrogels used as materials for prostheses or for coating prostheses are characterized by their function or properties Knowledge clusters and expert driving factors show that biomaterials, tissue engineering, and biofabrication research is concentrated in the most patents.


2018 ◽  
Vol 59 (3-4) ◽  
pp. 286-299 ◽  
Author(s):  
Annika Weigand ◽  
Raymund E. Horch ◽  
Anja M. Boos ◽  
Justus P. Beier ◽  
Andreas Arkudas

Background: Most of the current treatment options for large-scale tissue defects represent a serious burden for the patients, are often not satisfying, and can be associated with significant side effects. Although major achievements have already been made in the field of tissue engineering, the clinical translation in case of extensive tissue defects is only in its early stages. The main challenge and reason for the failure of most tissue engineering approaches is the missing vascularization within large-scale transplants. Summary: The arteriovenous (AV) loop model is an in vivo tissue engineering strategy for generating axially vascularized tissues using the own body as a bioreactor. A superficial artery and vein are anastomosed to create an AV loop. This AV loop is placed into an implantation chamber for prevascularization of the chamber inside, e.g., a scaffold, cells, and growth factors. Subsequently, the generated tissue can be transplanted with its vascular axis into the defect site and anastomosed to the local vasculature. Since the blood supply of the growing tissue is based on the AV loop, it will be immediately perfused with blood in the recipient site leading to optimal healing conditions even in the case of poorly vascularized defects. Using this tissue engineering approach, a multitude of different axially vascularized tissues could be generated, such as bone, skeletal or heart muscle, or lymphatic tissues. Upscaling from the small animal AV loop model into a preclinical large animal model could pave the way for the first successful attempt in clinical application. Key Messages: The AV loop model is a powerful tool for the generation of different axially vascularized replacement tissues. Due to minimal donor site morbidity and the possibility to generate patient-specific tissues variable in type and size, this in vivo tissue engineering approach can be considered as a promising alternative therapy to current treatment options of large-scale defects.


2008 ◽  
Vol 44 (4) ◽  
pp. 806 ◽  
Author(s):  
G. Forte ◽  
Carotenuto F. ◽  
Pagliari F. ◽  
Pagliari S. ◽  
P. Cossa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document