A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity

2021 ◽  
Author(s):  
Sera Hong ◽  
Joon Myong Song

A 3D printing-based HepG2 liver spheroid culture model was developed for in situ quantitative evaluation and high-content monitoring of drug-induced hepatotoxicity.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryohei Maruhashi ◽  
Hiroaki Eguchi ◽  
Risa Akizuki ◽  
Shohei Hamada ◽  
Takumi Furuta ◽  
...  

Abstract The aberrant expression of claudins (CLDNs), which are tight junctional proteins, is seen in various solid tumors, but the regulatory mechanisms and their pathophysiological role are not well understood. Both CLDN1 and CLDN11 were highly expressed in human lung squamous cell carcinoma (SCC). Chrysin, found in high concentration in honey and propolis, decreased CLDN1 and CLDN11 expression in RERF-LC-AI cells derived from human lung SCC. The phosphorylation level of Akt was decreased by chrysin, but those of ERK1/2 and c-Jun were not. LY-294002, an inhibitor of phosphatidylinositol 3-kinase, inhibited the phosphorylation of Akt and decreased the expression levels of CLDN1 and CLDN11. The association between phosphoinositide-dependent kinase 1 (PDK1) and Akt was inhibited by chrysin, but the phosphorylation of PDK1 was not. Immunoprecipitation and quartz-crystal microbalance assays revealed that biotinylated-chrysin binds directly to Akt. The knockdown of CLDN1 and CLDN11 using small interfering RNAs increased the transepithelial flux of doxorubicin (DXR), an anthracycline anticancer drug. Similarly, both chrysin and LY-294002 increased DXR flux. Neither CLDN1 knockdown, CLDN11 knockdown, nor chrysin changed the anticancer drug-induced cytotoxicity in a two-dimensional culture model, whereas they enhanced cytotoxicity in a spheroid culture model. Taken together, chrysin may bind to Akt and inhibit its phosphorylation, resulting in the elevation of anticancer drug-induced toxicity mediated by reductions in CLDN1 and CLDN11 expression in RERF-LC-AI cells. We suggest that chrysin may be useful as an adjuvant chemotherapy in lung SCC.


2019 ◽  
Author(s):  
JiUn Lee ◽  
SooJung Chae ◽  
Hyeongjin Lee ◽  
GeunHyung Kim
Keyword(s):  

2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


2021 ◽  
pp. 109791
Author(s):  
Ievgenii Liashenko ◽  
Alberto Ramon ◽  
Andreu Cabot ◽  
Joan Rosell-Llompart
Keyword(s):  

Cellulose ◽  
2021 ◽  
Author(s):  
Julen Vadillo ◽  
Izaskun Larraza ◽  
Tamara Calvo-Correas ◽  
Nagore Gabilondo ◽  
Christophe Derail ◽  
...  

2019 ◽  
Vol 41 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Manuela G. Neuman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document