scholarly journals Towards reliable three-electrode cells for lithium–sulfur batteries

2022 ◽  
Author(s):  
Yu-Chuan Chien ◽  
Daniel Brandell ◽  
Matthew James Lacey

Three-electrode measurements are valuable to the understanding of the electrochemical processes in a battery system. However, their application in lithium–sulfur chemistry is difficult due to the complexity of the system...

Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


2015 ◽  
Vol 3 (30) ◽  
pp. 15683-15691 ◽  
Author(s):  
Xingwen Yu ◽  
Jorphin Joseph ◽  
Arumugam Manthiram

A non-porous, cation-selective, lithiated Nafion membrane effectively suppresses the polysulfide-shuttle. The Li–S battery system with the lithiated Nafion membrane exhibits significantly enhanced cyclability compared to the cells with the traditional liquid-electrolyte integrated porous separator.


2019 ◽  
Author(s):  
Yu-Chuan Chien ◽  
Ruijun Pan ◽  
Ming-Tao Lee ◽  
Leif Nyholm ◽  
Daniel Brandell ◽  
...  

This work aims to address two major roadblocks in the development of lithium-sulfur (Li-S) batteries: the inefficient deposition of Li on the metallic Li electrode and the parasitic "polysulfide redox shuttle". These roadblocks are here approached, respectively, by the combination of a cellulose separator with a cathode-facing conductive porous carbon interlayer, based on their previously reported individual benefits. The cellulose separator increases cycle life by 33%, and the interlayer by a further 25%, in test cells with positive electrodes with practically relevant specifications and a relatively low electrolyte/sulfur (E/S) ratio. Despite the prolonged cycle life, the combination of the interlayer and cellulose separator increases the polysulfide shuttle current, leading to reduced Coulombic efficiency. Based on XPS analyses, the latter is ascribed to a change in the composition of the solid electrolyte interphase (SEI) on Li. Meanwhile, electrolyte decomposition is found to be slower in cells with cellulose-based separators, which explains their longer cycle life. These counterintuitive observations demonstrate the complicated interactions between the cell components in the Li-S system and how strategies aiming to mitigate one unwanted process may exacerbate another. This study demonstrates the value of a holistic approach to the development of Li-S chemistry.<br>


RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 13680-13685 ◽  
Author(s):  
Di Zhao ◽  
Xinye Qian ◽  
Lina Jin ◽  
Xiaolong Yang ◽  
Shanwen Wang ◽  
...  

A routine separator modified by a Ketjen black (KB) layer on the cathode side has been investigated to improve the electrochemical performances of Li–S batteries.


2019 ◽  
Vol 10 (32) ◽  
pp. 7484-7495 ◽  
Author(s):  
Huadong Yuan ◽  
Tiefeng Liu ◽  
Yujing Liu ◽  
Jianwei Nai ◽  
Yao Wang ◽  
...  

This review summarizes recent progress of biomass-derived materials in Li–S batteries. These materials are promising due to their advantages including strong physical and chemical adsorption, high abundance, low cost, and environmental friendliness.


2019 ◽  
Vol 2 (4) ◽  
pp. 2620-2628 ◽  
Author(s):  
Ye Fan ◽  
Dan Liu ◽  
Md Mokhlesur Rahman ◽  
Tao Tao ◽  
Weiwei Lei ◽  
...  

Carbon ◽  
2017 ◽  
Vol 111 ◽  
pp. 493-501 ◽  
Author(s):  
Pei-Yan Zhai ◽  
Jia-Qi Huang ◽  
Lin Zhu ◽  
Jia-Le Shi ◽  
Wancheng Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document