Chemical reduction of Ag+ to Ag employing organic electron donors: evaluation of the effect of Ag+-mediated cytosine–cytosine base pairing on the aggregation of Ag nanoparticles

2021 ◽  
Author(s):  
Takenori Dairaku ◽  
Rika Kawai ◽  
Kanako Nozawa-Kumada ◽  
Kentaro Yoshida ◽  
Tetsuya Ono ◽  
...  

The formation of C–Ag+–C base pairing inhibits the aggregation of AgNPs in solution. The total concentration of the obtained AgNP solution can be controlled by the degree of the reduction activity of the organic electron donors.

2021 ◽  
Author(s):  
Yuxi Zhao ◽  
Marion Rollet ◽  
Laurence Charles ◽  
Gabriel Canard ◽  
Didier Gigmes ◽  
...  

2010 ◽  
Vol 123-125 ◽  
pp. 615-618 ◽  
Author(s):  
Indrajit Sinha ◽  
Manjeet Singh ◽  
Rajiv Kumar Mandal

This presentation deals with the aggregation characteristics of Cu and Ag nanoparticles in presence of starch as the polymer stabilizer. Uncontrolled aggregation of the destabilized nanoparticles offers problem for applications based on surface plasmon activity. Polymer or small molecule surfactants are used to control nature of aggregation of nanoparticles produced by chemical reduction synthesis routes. Different growth models such as diffusion limited cluster aggregation (DLCA), reaction limited cluster aggregation (RLCA) proposed to explain the formation of fractal colloidal aggregates do not account for aggregate formation in presence of polymer or small molecule surfactants. We shall be discussing the role of starch on the aggregation characteristics of copper and silver nanoparticles formed by chemical reduction in aqueous conditions. The effect of NaOH concentration and consequently the pH on such aggregation kinetics during such synthesis is delineated. We use small angle x-ray scattering (SAXS) to quantitatively understand different aspects of aggregation behavior.


2013 ◽  
Vol 756 ◽  
pp. 99-105
Author(s):  
Rajasingam Ratnamalar ◽  
Mustapha Mariatti ◽  
Zulkifli Ahmad ◽  
Sharif Zein Sharif Hussein

This work reports a simple chemical reduction route for the preparation of uniformed Ag nanoparticles whereby a fine control over the sizes of the Ag nanoparticles was studied by varying the concentrations of the reducing agents used. In characterization, UV-Vis spectroscopy showed the changes in optical properties of the Ag nanoparticles with regards to their sizes, where as the XRD patterns of the synthesized Ag nanoparticles confirmed the distinct peaks approximately at 2θ = 38.1°, 44.3°, 64.4°, 77.4°, and 81.5 representing Bragg’s reflections from (111), (200), (220), (311), and (222) planes of the face centred cubic lattice phase. This route of synthesis is feasible to produce Ag nanoparticles with diameters in the range of 30-45 nm.


2013 ◽  
Vol 24 ◽  
pp. 163-167 ◽  
Author(s):  
S.D. Sartale ◽  
A.A. Ansari

Ag nanoparticles were grown on glass substrate by spin coating of Ag ions (AgNO3) solution followed by either chemical reduction, in aqueous hydrazine or NaBH4 solution, or by thermal reduction in H2 environment. Effects of different reducing agent have been explained. Morphology and absorbance spectra ofAg nanoparticles films, measured by using Scanning Electron Microscopy (SEM) and UV-visible Spectrophotometer techniques, are used to understand effect of reduction process on growth of Ag nanoparticles. To grow uniformly size distributed Ag nanoparticles thermal reduction in H2 is better than chemical reduction by aqueous either NaBH4 orhydrazine hydrate solutions.


2018 ◽  
Vol 57 (12) ◽  
pp. 3148-3153 ◽  
Author(s):  
Guillaume Tintori ◽  
Pierre Nabokoff ◽  
Ruqaya Buhaibeh ◽  
David Bergé-Lefranc ◽  
Sébastien Redon ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xin Zhang ◽  
Haiyan Zhang ◽  
Sheng Yan ◽  
Zugang Zeng ◽  
Anshou Huang ◽  
...  

AbstractSensitive in situ detection of organic molecules is highly demanded in environmental monitoring. In this work, the surface enhanced Raman spectroscopy (SERS) is adopted in microfluidics to detect the organic molecules with high accuracy and high sensitivity. Here the SERS substrate in microchannel consists of Ag nanoparticles synthesized by chemical reduction. The data indicates the fabrication conditions have great influence on the sizes and distributions of Ag nanoparticles, which play an important role on the SERS enhancement. This result is further confirmed by the simulation of electromagnetic field distributions based on finite difference time domain (FDTD) method. Furthermore, the SERS spectra of organic molecule (methylene blue) obtained in this plasmonic microfluidic system exhibit good reproducibility with high sensitivity. By a combination of SERS and microfluidics, our work not only explores the research field of plasmonics but also has broad application prospects in environmental monitoring.


2020 ◽  
Vol 26 (45) ◽  
pp. 10336-10347
Author(s):  
Conrad Wagner ◽  
Franka Kreis ◽  
Dennis Popp ◽  
Olaf Hübner ◽  
Elisabeth Kaifer ◽  
...  

2013 ◽  
Vol 755 ◽  
pp. 97-103 ◽  
Author(s):  
A. Ruíz-Baltazar ◽  
R. Esparza ◽  
R. Pérez ◽  
G. Rosas

In this study, a natural zeolite clinoptilolite-type was impregnated through homogeneous and heterogeneous nucleation with silver nanoparticles. The synthesis of Ag nanoparticles was carried out by chemical reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4). In the case of homogeneous nucleation, colloidal solution of Ag nanoparticles at concentrations of 1, 2 and 4 parts per million was added and magnetically mixed with the porous material. With respect to heterogeneous nucleation, a solution of clinoptilolite and silver nitrate (0.01 M) was prepared and stirred; subsequently, the reduction of Ag was possible due to the addition of an aqueous solution of sodium borohydride. For the structural characterization, transmission electron microscopy (TEM), X-ray diffraction (XRD) and infrared spectroscopy (IR) techniques were carried out. The results were compared and discussed in both types of nucleation.


2015 ◽  
Vol 54 (38) ◽  
pp. 11236-11239 ◽  
Author(s):  
Samuel S. Hanson ◽  
Eswararao Doni ◽  
Kyle T. Traboulsee ◽  
Graeme Coulthard ◽  
John A. Murphy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document