The Electrochemical Reduction of a Flexible Mn(II) Salen-Based Metal-Organic Framework

2021 ◽  
Author(s):  
Marcello B Solomon ◽  
Carol Hua ◽  
Bun Chan ◽  
Tamara L Church ◽  
Seth M Cohen ◽  
...  

A new metal-organic framework (MOF) containing a Mn(II) salen complex (BET surface area = 967±6 m2 g−1) undergoes a reversible crystalline-to-amorphous transformation. Experimental studies and computational calculations show that the...

2021 ◽  
Author(s):  
Yaping Zhang ◽  
Daofei Lv ◽  
Jiayu Chen ◽  
Zewei Liu ◽  
Chongxiong Duan ◽  
...  

The separation of ethylene/ethane mixture using energy-efficient technologies is important but challenging. Here, we prepared a Zr-based metal-organic framework (MOF-545) possessing high Brunauer-Emmett-Teller (BET) surface area of 2265.4 m2/g, and...


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1764
Author(s):  
Sarah Zayan ◽  
Ahmed Elshazly ◽  
Marwa Elkady

Composite metal–organic frameworks combine large and accessible surface areas with low density and high stability. Herein, we present novel nanocomposites of polypyrrole/aluminum fumarate metal–organic framework (PPy/AlFu MOF), which were synthesized via in situ oxidative polymerization with the aim of MOF functionalization to enhance its thermal stability and increase the specific surface area so that these nanocomposites may be used as potential adsorbents. The synthesized nanocomposites were characterized by various techniques, such as powder X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy (FTIR). The successful functionalization of aluminum fumarate MOF was confirmed by FTIR, and the Brunauer–Emmett–Teller (BET) surface area of the PPy/MOF nanocomposite slightly increased from 795 to 809 m2/g. Thermogravimetric analysis data also show that the weight loss of the composite is up to 30% at temperatures up to 500 ℃. Remarkably, lead (50 ppm) sequestration using the composite was tested, and the atomic absorption spectrometry data demonstrate that PPy/MOF is a super-adsorbent for heavy metal ions. This work shows that the novel polymer–MOF composites are promising materials for the selective removal of lead from wastewater streams.


2016 ◽  
Vol 52 (88) ◽  
pp. 12988-12991 ◽  
Author(s):  
Baishu Zheng ◽  
Hang Wang ◽  
Zhaoxu Wang ◽  
Noriaki Ozaki ◽  
Cheng Hang ◽  
...  

We present here a highly porous rht-type acylamide-functionalized MOF (HNUST-5), which exhibits a high BET surface area of 3643 m2 g−1, large and selective CO2 adsorption at near ambient temperature.


2021 ◽  
Vol 8 (1) ◽  
pp. 201553
Author(s):  
Hamza Ahmad Isiyaka ◽  
Khairulazhar Jumbri ◽  
Nonni Soraya Sambudi ◽  
Zakariyya Uba Zango ◽  
Bahruddin Saad ◽  
...  

Effective removal of 4-chloro-2-methylphenoxyacetic acid (MCPA), an emerging agrochemical contaminant in water with carcinogenic and mutagenic health effects has been reported using hydrothermally synthesized MIL-101(Cr) metal-organic framework (MOF). The properties of the MOF were ascertained using powdered X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and surface area and porosimetry (SAP). The BET surface area and pore volume of the MOF were 1439 m 2 g −1 and 0.77 cm 3 g −1 , respectively. Artificial neural network (ANN) model was significantly employed for the accurate prediction of the experimental adsorption capacity ( q e ) values with minimal error. A rapid removal of the pollutant (99%) was recorded within short time (approx. 25 min), and the reusability of the MOF (20 mg) was achieved up to six cycles with over 90% removal efficiency. The kinetics, isotherm and thermodynamics of the process were described by the pseudo-second-order, Freundlich and endothermic adsorption, respectively. The adsorption process is spontaneous based on the negative Gibbs free energy values. The significant correlation between the experimental findings and simulation results suggests the great potential of MIL-101(Cr) for the remediation of MCPA from water matrices.


2013 ◽  
Vol 125 (43) ◽  
pp. 11492-11495 ◽  
Author(s):  
Ruirui Yun ◽  
Zhiyong Lu ◽  
Yi Pan ◽  
Xiaozeng You ◽  
Junfeng Bai

2014 ◽  
Vol 50 (26) ◽  
pp. 3450 ◽  
Author(s):  
Ronny Grünker ◽  
Volodymyr Bon ◽  
Philipp Müller ◽  
Ulrich Stoeck ◽  
Simon Krause ◽  
...  

2019 ◽  
Vol 31 (3) ◽  
pp. 367-388 ◽  
Author(s):  
Ayesha Rehman ◽  
Sarah Farrukh ◽  
Arshad Hussain ◽  
Erum Pervaiz

The most important environmental challenge that the world is facing today is the control of the quantity of CO2 in the atmosphere, because it causes global warming. Increase in the global temperature results in greenhouse gas emission, interruption of the volcanic activity, and climatic changes. The alarming rise of the CO2 level impels to take some serious action to control these climatic changes. Various techniques are being utilized to capture CO2. However, chemical absorption and adsorption are supposed to be the most suitable techniques for post-combustion CO2 capture, but the main focus is on adsorption. The aim of this study is to provide a brief overview on the CO2 adsorption by a novel class of adsorbents called the metal–organic framework. The metal–organic framework is a porous material having high surface area with high CO2 adsorption capacity. The metal–organic frameworks possess dynamic structure and have large capacity to adsorb CO2 at either low pressure or high pressure due to its cavity size and surface area. Adsorption of CO2 in the metal–organic framework at various pressures depends upon pore volume and heat of adsorption correspondingly. In this review, different synthesis methods of the metal–organic framework such as slow evaporation, solvo thermal, mechanochemical, electrochemical, sonochemical, and microwave-assisted synthesis are briefly described as the structure of the metal–organic frameworks are mostly dependent upon synthesis techniques. In addition to this, different strategies are discussed to increase the CO2 adsorption capacity in the metal organic-framework. [Formula: see text]


2019 ◽  
Vol 72 (10) ◽  
pp. 811 ◽  
Author(s):  
Luke Conte ◽  
Tian-You Zhou ◽  
Omid T. Qazvini ◽  
Lujia Liu ◽  
David R. Turner ◽  
...  

The solvothermal reaction of 2-nitro-[1,1′‐biphenyl]‐4,4′‐dicarboxylic acid (H2bpdcNO2) with Zn(NO3)2·6H2O in DMF solvent does not give a functionalised variant of IRMOF-9. Single-crystal X-ray diffraction analysis shows the major initial product of this reaction, WUF-21 (WUF=Wollongong University Framework), is a porous interpenetrated diamondoid metal–organic framework (MOF) with a secondary building unit that ‘doubly straps’ eight bridging bpdcNO2 ligands in a distorted tetrahedral shape around an unusual pentazinc core. A second porous MOF phase (WUF-23) containing a large and novel dodecazinc secondary building unit forms in the same reaction and eventually predominates in solutions containing formate anion, which arises from the hydrolysis of DMF. Doping the starting ligand with [1,1′‐biphenyl]‐4,4′‐dicarboxylic acid (H2bpdc) provides a facile way to grow nitro-functionalised IRMOF-9, hereafter denoted as WUF-22, where the dopant is carried through into the product. Activated WUF-22 is a microporous solid with an apparent Brunauer–Emmett–Teller (BET) surface area of 2497m2g−1, which matches well with geometric surface area calculations. The CO2 adsorption properties of WUF-22 are reported.


Sign in / Sign up

Export Citation Format

Share Document