Protein corona-induced aggregation of differently sized nanoplastics: Impacts of protein type and concentration

Author(s):  
Xing Li ◽  
Erkai He ◽  
Bing Xia ◽  
Yang Liu ◽  
Peihua Zhang ◽  
...  

Nanoplastics contamination is one of the pressing environmental concerns globally. Among many environmental factors in the aquatic system, ubiquitous proteins are expected to affect the physicochemical properties of nanoplastics, and...

OSEANA ◽  
2019 ◽  
Vol 42 (2) ◽  
pp. 12-22
Author(s):  
Triyoni Purbonegoro

FACTORS THAT AFFECTING THE TOXICITY OF POLLUTANTS TO AQUATIC ORGANISMS. There are a large number of pollutants in aquatic environment with various characteristics and factors that can modify and affect the toxicity of pollutants in this environment. The major factors affecting pollutant toxicity include physicochemical properties of pollutants, mode of exposure, time, environmental factors, and biological factors. Moreover, organisms in an aquatic ecosystem are seldom exposed to only single pollutant, and most cases the stress of pollution on aquatic ecosystems is related to the interaction and combined effects of many chemicals. The combined effects may be synergistic or antagonistic, depending on the pollutants and the physiological condition of the organism involved.


1996 ◽  
Vol 30 (1) ◽  
pp. 105-131 ◽  
Author(s):  
Graeme Hugo

This article focuses on international migration occurring as a result of environmental changes and processes. It briefly reviews attempts to conceptualize environment-related migration and then considers the extent to which environmental factors have been and may be significant in initiating migration. Following is an examination of migration as an independent variable in the migration-environment relationship. Finally, ethical and policy dimensions are addressed.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 167 ◽  
Author(s):  
Mengmeng Zhang ◽  
Ning Wang ◽  
Jingyun Zhang ◽  
Yanbo Hu ◽  
Dunjiang Cai ◽  
...  

A better understanding of soil fungal communities is very useful in revealing the effects of an agroforestry system and would also help us to understand the fungi-mediated effects of agricultural practices on the processes of soil nutrient cycling and crop productivity. Compared to conventional monoculture farming, agroforestry systems have obvious advantages in improving land use efficiency and maintaining soil physicochemical properties, reducing losses of water, soil material, organic matter, and nutrients, as well as ensuring the stability of yields. In this study, we attempted to investigate the impact of a mulberry/alfalfa intercropping system on the soil physicochemical properties and the rhizosphere fungal characteristics (such as the diversity and structure of the fungal community), and to analyze possible correlations among the planting pattern, the soil physicochemical factors, and the fungal community structure. In the intercropping and monoculture systems, we determined the soil physicochemical properties using chemical analysis and the fungal community structure with MiSeq sequencing of the fungal ITS1 region. The results showed that intercropping significantly improved the soil physicochemical properties of alfalfa (total nitrogen, alkaline hydrolysable nitrogen, available potassium, and total carbon contents). Sequencing results showed that the dominant taxonomic groups were Ascomycota, Basidiomycota, and Mucoromycota. Intercropping increased the fungal richness of mulberry and alfalfa rhizosphere soils and improved the fungal diversity of mulberry. The diversity and structure of the fungal community were predominantly influenced by both the planting pattern and soil environmental factors (total nitrogen, total phosphate, and total carbon). Variance partitioning analysis showed that the planting pattern explained 25.9% of the variation of the fungal community structure, and soil environmental factors explained 63.1% of the variation. Planting patterns and soil physicochemical properties conjointly resulted in changes of the soil fungal community structure in proportion.


2018 ◽  
Vol 5 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Matthew R. Findlay ◽  
Daniel N. Freitas ◽  
Maryam Mobed-Miremadi ◽  
Korin E. Wheeler

Proteins encountered in biological and environmental systems bind to engineered nanomaterials (ENMs) to form a protein corona (PC) that alters the surface chemistry, reactivity, and fate of the ENMs.


ACS Nano ◽  
2016 ◽  
Vol 10 (3) ◽  
pp. 3723-3737 ◽  
Author(s):  
Arafeh Bigdeli ◽  
Sara Palchetti ◽  
Daniela Pozzi ◽  
Mohammad Reza Hormozi-Nezhad ◽  
Francesca Baldelli Bombelli ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3214
Author(s):  
Edward Sacher ◽  
Arthur Yelon

A consideration of the antibacterial efficacy of metal-based nanoparticles, from the point of view of their physicochemical properties, suggests that such efficacy arises from the protein coronas that form around them, and that the contents of the coronas depend on the chemical groups found on the nanoparticle surfaces. We offer a new perspective and new insights, making use of our earlier observations of the physicochemical properties of nanoparticle surfaces, to propose that the nanoparticle serves as a mediator for the formation and activation of the protein corona, which attacks the bacterium. That is, the nanoparticle enhances the body’s natural defenses, using proteins present in body fluids.


Toxicology ◽  
2020 ◽  
Vol 442 ◽  
pp. 152545
Author(s):  
Alejandro Déciga-Alcaraz ◽  
Estefany I. Medina-Reyes ◽  
Norma L. Delgado-Buenrostro ◽  
Carolina Rodríguez-Ibarra ◽  
Adriana Ganem-Rondero ◽  
...  

2014 ◽  
Vol 5 ◽  
pp. 1699-1711 ◽  
Author(s):  
Wolfgang G Kreyling ◽  
Stefanie Fertsch-Gapp ◽  
Martin Schäffler ◽  
Blair D Johnston ◽  
Nadine Haberl ◽  
...  

When particles incorporated within a mammalian organism come into contact with body fluids they will bind to soluble proteins or those within cellular membranes forming what is called a protein corona. This binding process is very complex and highly dynamic due to the plethora of proteins with different affinities and fractions in different body fluids and the large variation of compounds and structures of the particle surface. Interestingly, in the case of nanoparticles (NP) this protein corona is well suited to provide a guiding vehicle of translocation within body fluids and across membranes. This NP translocation may subsequently lead to accumulation in various organs and tissues and their respective cell types that are not expected to accumulate such tiny foreign bodies. Because of this unprecedented NP accumulation, potentially adverse biological responses in tissues and cells cannot be neglected a priori but require thorough investigations. Therefore, we studied the interactions and protein binding kinetics of blood serum proteins with a number of engineered NP as a function of their physicochemical properties. Here we show by in vitro incubation tests that the binding capacity of different engineered NP (polystyrene, elemental carbon) for selected serum proteins depends strongly on the NP size and the properties of engineered surface modifications. In the following attempt, we studied systematically the effect of the size (5, 15, 80 nm) of gold spheres (AuNP), surface-modified with the same ionic ligand; as well as 5 nm AuNP with five different surface modifications on the binding to serum proteins by using proteomics analyses. We found that the binding of numerous serum proteins depended strongly on the physicochemical properties of the AuNP. These in vitro results helped us substantially in the interpretation of our numerous in vivo biokinetics studies performed in rodents using the same NP. These had shown that not only the physicochemical properties determined the AuNP translocation from the organ of intake towards blood circulation and subsequent accumulation in secondary organs and tissues but also the the transport across organ membranes depended on the route of AuNP application. Our in vitro protein binding studies support the notion that the observed differences in in vivo biokinetics are mediated by the NP protein corona and its dynamical change during AuNP translocation in fluids and across membranes within the organism.


Sign in / Sign up

Export Citation Format

Share Document