scholarly journals FAKTOR-FAKTOR YANG MEMPENGARUHI TOKSISITAS BAHAN PENCEMAR TERHADAP ORGANISME PERAIRAN

OSEANA ◽  
2019 ◽  
Vol 42 (2) ◽  
pp. 12-22
Author(s):  
Triyoni Purbonegoro

FACTORS THAT AFFECTING THE TOXICITY OF POLLUTANTS TO AQUATIC ORGANISMS. There are a large number of pollutants in aquatic environment with various characteristics and factors that can modify and affect the toxicity of pollutants in this environment. The major factors affecting pollutant toxicity include physicochemical properties of pollutants, mode of exposure, time, environmental factors, and biological factors. Moreover, organisms in an aquatic ecosystem are seldom exposed to only single pollutant, and most cases the stress of pollution on aquatic ecosystems is related to the interaction and combined effects of many chemicals. The combined effects may be synergistic or antagonistic, depending on the pollutants and the physiological condition of the organism involved.

Fisheries ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 16-19
Author(s):  
Anatoliy Sadchikov ◽  
Sergei Ostroumov

Dissolved organic matter (DOM) is one of the important parameters of water quality in aquatic ecosystems. In the experiments, phyto- and bacterioplankton actively consumed 14C-labeled chlorella hydrolyzate. Removal (by filtration) of cyanobacteria from the aquatic environment leads to an increase in the rate of DOM consumption by bacteria. This indicates the possibility of a negative effect of cyanobacterial metabolites on the physiological processes of bacterioplankton.


1994 ◽  
Vol 84 (2) ◽  
pp. 255-263 ◽  
Author(s):  
J. J. Lutwama ◽  
L. G. Mukwaya

AbstractSome physical and biological factors affecting the abundance of larvae and pupae of the Aedes simpsoni (Theobald) complex, in leaf axils of different plants at several locations in Uganda, were investigated during the rainy and dry seasons. The mean number of axils per plant, axils containing larvae and pupae, and the mean number of larvae and pupae per ml of axil water all varied between seasons and locations. The percentage of axils containing larvae and pupae increased with volume of water in the axils of the different plants. The mean number of larvae and pupae per axil containing water also increased with water content of the axils. There was more water in the axils during the rainy than during the dry seasons. The mean temperature of water was lower in Xanthosorna sagittifoliurn (20.4°C) and Colocasia esculentum (22.1°–22.7°C) than in those of banana (25.0°–27.2°C) and this affected developmental rates of larvae and pupae. The indices of association between larvae and pupae of the A. simpsoni complex and Malaya taeniarostris (Theobald) did not indicate competition and there was some habitat segregation between them. The volume and temperature of water in the axils appeared to be the major factors affecting larval and pupal abundance of A. simpsoni in the axils.


2021 ◽  
Vol 25 (2) ◽  
pp. 497-509
Author(s):  
Jan Greiwe ◽  
Oliver Olsson ◽  
Klaus Kümmerer ◽  
Jens Lange

Abstract. Pesticides may impact aquatic ecosystems when entering water bodies. Measures for mitigation against pesticide inputs include vegetated treatment systems (VTSs). Some of these systems have very short hydraulic retention time (< 1 h) but nevertheless manage to effectively reduce peak concentrations of contaminants as a result of dispersion. We hypothesize that the effect of dispersion on contaminant mitigation in VTSs depends on the shape of the contaminant input signal chemograph, which in turn is related to factors affecting contaminant mobilization in the contributing catchment. In order to test this hypothesis, we grouped chemographs of six contaminants originating from a viticultural catchment during 10 discharge events into clusters according to chemograph shape. We then compared peak concentration reduction and mass removal in a downstream VTS, both among clusters and in terms of compound properties and discharge dynamics. We found that chemograph clusters reflected combined effects of contaminant source areas, transport pathways, and discharge dynamics. While mass loss was subject to major uncertainties, peak concentration reduction rate was clearly related to chemograph clusters and dispersion sensitivity. These findings suggest that mitigation of acute toxicity in a VTS is stronger for compounds with sharp-peaked chemographs, whose formation is related to the contributing catchment and can be analyzed by chemograph clustering.


2018 ◽  
Vol III (I) ◽  
pp. 27-31
Author(s):  
Mohammad Faizan Asif ◽  
Shabana Gulzar Toor ◽  
Fahad Pervaiz

Biological Renal clearance comprises multiple active and passive mechanisms, in turn leading to the formation of urine. In this article, a brief review of passive filtration in glomerular capillaries, active tubular secretion, and reabsorption is discussed. Factors affecting renal clearance have also been brought into the discussion, encompassing drug physicochemical properties, drug concentration, the volume of distribution, protein binding, blood flow to kidneys, biological factors, and drug interactions. Further, the necessity of dose adjustment in patients suffering renal impairment has been highlighted.


2015 ◽  
Vol 14 (1) ◽  
pp. 108-126 ◽  
Author(s):  
Donat-P. Häder ◽  
Craig E. Williamson ◽  
Sten-Åke Wängberg ◽  
Milla Rautio ◽  
Kevin C. Rose ◽  
...  

Combined effects of anthropogenic changes in the environmental condition in marine ecosystems, including UV, CO2and temperature.


2013 ◽  
Vol 10 (6) ◽  
pp. 439 ◽  
Author(s):  
Darren S. Baldwin

Environmental context Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. This paper discusses the distribution, cycling and ecological significance of five major classes of organic P in the aquatic environment and discusses several principles to guide organic P research into the future. Abstract Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. Unfortunately, in many studies the ‘organic’ P fraction is operationally defined. However, there are an increasing number of studies where the organic P species have been structurally characterised – in part because of the adoption of 31P NMR spectroscopic techniques. There are five classes of organic P species that have been specifically identified in the aquatic environment – nucleic acids, other nucleotides, inositol phosphates, phospholipids and phosphonates. This paper explores the identification, quantification, biogeochemical cycling and ecological significance of these organic P compounds. Based on this analysis, the paper then identifies a number of principles which could guide the research of organic P into the future. There is an ongoing need to develop methods for quickly and accurately identifying and quantifying organic P species in the environment. The types of ecosystems in which organic P dynamics are studied needs to be expanded; flowing waters, floodplains and small wetlands are currently all under-represented in the literature. While enzymatic hydrolysis is an important transformation pathway for the breakdown of organic P, more effort needs to be directed towards studying other potential transformation pathways. Similarly effort should be directed to estimating the rates of transformations, not simply reporting on the concentrations. And finally, further work is needed in elucidating other roles of organic P in the environment other than simply a source of P to aquatic organisms.


1988 ◽  
Vol 20 (8-9) ◽  
pp. 167-178
Author(s):  
O. M. Skulberg

Off-flavour substances may be regarded as a resource which can be used to study special ecological mechanisms. Relevant research on off-flavours is inextricably combined with the study of perception, ethology, genetic control etc. The chemicals concerned are commonly perceived by the senses of olfaction and gustation. Thus research on the chemical ecology of off-flavour substances in the aquatic environment involves the study of a variety of disciplines. For example the biochemistry of the relevant substances and appropriate metabolic pathways must be considered. Chemical properties are important for the behaviour of the substances. The production of off-flavours by organisms is related to phenological circumstances. The biotic effects of ecologically significant substances are dependent on several environmental factors. This paper draws attention to the possible application of fundamental research in this area to selected problems of ecological importance.


Sign in / Sign up

Export Citation Format

Share Document