DOM removal is more important than the specific DOM removal pretreatment process for GAC adsorption of TrOCs

2021 ◽  
Vol 7 (10) ◽  
pp. 1707-1713
Author(s):  
Anthony Kennedy ◽  
Janet Hausmann ◽  
Christopher Corwin ◽  
R. Scott Summers
Keyword(s):  

For high levels of TrOC removal by GAC, reducing DOC0 concentration is more important than the specific DOM removal pretreatment process.

2003 ◽  
Vol 47 (1) ◽  
pp. 113-120 ◽  
Author(s):  
D.S. Chaudhary ◽  
S. Vigneswaran ◽  
V. Jegatheesan ◽  
H.H. Ngo ◽  
H. Moon ◽  
...  

Wastewater treatment has always been a major concern in the developed countries. Over the last few decades, activated carbon adsorption has gained importance as an alternative tertiary wastewater treatment and purification process. In this study, granular activated carbon (GAC) adsorption was evaluated in terms of total organic carbon (TOC) removal from low strength synthetic wastewater. This paper provides details on adsorption experiments conducted on synthetic wastewater to develop suitable adsorption isotherms. Although the inorganics used in the synthetic wastewater solution had an overall unfavourable effect on adsorption of organics, the GAC adsorption system was found to be effective in removing TOC from the wastewater. This study showed that equation of state (EOS) theory was able to fit the adsorption isotherm results more precisely than the most commonly used Freundlich isotherm. Biodegradation of the organics with time was the most crucial and important aspect of the system and it was taken into account in determining the isotherm parameters. Initial organic concentration of the wastewater was the determining factor of the model parameters, and hence the isotherm parameters were determined covering a wide range of initial organic concentrations of the wastewater. As such, the isotherm parameters derived using the EOS theory could predict the batch adsorption and fixed bed adsorption results of the multi-component system successfully. The isotherm parameters showed a significant effect on the determination of the mass transfer coefficients in batch and fixed bed systems.


2012 ◽  
Vol 65 (9) ◽  
pp. 1684-1691 ◽  
Author(s):  
G. Farabegoli ◽  
A. Chiavola ◽  
E. Rolle

The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as ‘olive mill wastewaters’ (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80–300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.


1983 ◽  
Vol 75 (3) ◽  
pp. 144-149 ◽  
Author(s):  
William E. Thacker ◽  
Vernon L. Snoeyink ◽  
John C. Crittenden

1998 ◽  
Vol 37 (10) ◽  
pp. 135-146 ◽  
Author(s):  
Akira Yuasa

Microfiltration (MF) and ultrafiltration (UF) pilot plants were operated to produce drinking water from surface water from 1992 to 1996. Microfiltration was combined with pre-coagulation by polyaluminium chloride and was operated in a dead-end mode using hollow fiber polypropylene and monolith type ceramic membranes. Ultrafiltration pilot was operated in both cross-flow and dead-end modes using hollow fiber cellulose acetate membrane and was combined occasionally with powdered activated carbon (PAC) and granular activated carbon (GAC) adsorption. Turbidity in the raw water varied in the range between 1 and 100 mg/L (as standard Kaolin) and was removed almost completely in all MF and UF pilot plants to less than 0.1 mg/L. MF and UF removed metals such as iron, manganese and aluminium well. The background organics in the river water measured as KMnO4 demand varied in the range between 3 and 16 mg/L. KMnO4 demand decreased to less than 2 mg/L and to less than 3 mg/L on the average by the coagulation-MF process and the sole UF process, respectively. Combination of PAC or GAC adsorption with UF resulted in an increased removal of the background organics and the trihalomethanes formation potential as well as the micropollutants such as pesticides. Filtration flux was controlled in the range between 1.5 and 2.5 m/day with the trans-membrane pressure less than 100 kPa in most cases for MF and UF. The average water recovery varied from 99 to 85%.


1990 ◽  
Vol 82 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Wayne E. Koffskey ◽  
Benjamin W. Lykins
Keyword(s):  

2018 ◽  
Vol 77 (8) ◽  
pp. 1990-1997 ◽  
Author(s):  
Shahzad Jamil ◽  
Sanghyun Jeong ◽  
Saravanamuthu Vigneswaran

Abstract Reverse osmosis concentrate (ROC) from wastewater reclamation plants have high concentrations of organic and inorganic compounds, which have to be removed before its disposal. Forward osmosis (FO) and nanofiltration (NF) membranes were tested to treat the ROC for possible water reuse. This research investigated the combined and individual influence of organic and inorganic matter on the fouling of NF and FO membranes. The results revealed that the NF membrane removed most of the organic compounds and some inorganics. The study further highlighted that the FO membrane at NF mode removed the majority of the inorganic compounds and some organics from the ROC. A pretreatment of granulated activated carbon (GAC) adsorption removed 90% of the organic compounds from ROC. In addition, GAC adsorption and acid pretreatment of ROC improved the net water permeate flux by 17% when an FO membrane was used in the NF system. Acid treatment (by bringing the pH down to 5) helped to remove inorganic ions. Therefore, the resultant permeate can be recycled back to the RO water reclamation plant to improve its efficiency.


Sign in / Sign up

Export Citation Format

Share Document