The performance of three typical single and two coupled electrochemical processes for drilling wastewater treatment:comparison and implication

Author(s):  
Fanxin Kong ◽  
Yukun Wang ◽  
Jiamei Cao ◽  
Guangdong Sun ◽  
Wenpeng Wang ◽  
...  

Electrochemical process especially for anode and cathode coupling process is promising and energy efficient for wastewater treatment. In this study, three single processes (Electrocoagulation (EC), Electro-catalytic oxidation (ECO) and E-peroxone)...

2021 ◽  
Vol 233 ◽  
pp. 01106
Author(s):  
Song Du ◽  
Wenbiao Jin

Caprolactam wastewater produced by the production process of caprolactam is characterized by a very high toxicity and chemical oxygen demand (COD) values, having potential harm to the environment if treated improperly. However, these characteristics make caprolactam wastewaters difficult to treat using traditional methods. So the aim of this work was to develop a cost-effective caprolactam wastewater treatment process. Fenton oxidation, sequencing batch reactor activated sludge process (SBR) and electro-catalytic oxidation were proposed to treat caprolactam wastewater in the laboratory scale, and the treatment effects were investigated. Compared with Fenton oxidation, SBR and electro-catalytic oxidation can treat caprolactam wastewater at a lower cost and more efficiently. The pilot test results indicate that the COD can be decreased to less than 1000 mg/L by the combination process, and when the COD removal rates maintain 90%, the cost of caprolactam wastewater treatment is below 6 yuan/m3. The combination process showed better economic benefit.


2018 ◽  
Vol 251 ◽  
pp. 03021
Author(s):  
Evgeny Alekseev ◽  
Nadezhda Stashevskaya

The method of wastewater treatment by electroflotation is based on the electrochemical process of obtaining a gas dispersion. Features of the chemical composition of wastewater affect the electrochemical processes of water decomposition and the excretion of electrolysis gases. The aim of the research was to study the regularities of the separation of electrolysis gases from the ratio of the areas of polar electrodes and the value of the active reaction of the treated water (pH). It is established that the optimum value of the ratio of the electrode areas (fa : fc) close to 1. The value of the current density at the electrodes is recommended to take in 150 – 200 A/m2. An increase in the current density leads to heating of the liquid and an over-expenditure of electricity. The greatest influence of the pH of wastewater on the process of gas excretion is noted in the acidic medium. The gas yield is independent of the pH value in neutral and alkaline media. The gas yield remains practically unchanged with a current density of more than 150 A/m2 over the entire range of pH changes from 2 to 12.


2009 ◽  
Vol 610-613 ◽  
pp. 161-164
Author(s):  
Li Li Liang ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

A ferric stearate electrode was made by doctor-blade methods using the Fluorine tin oxide (FTO) conductive glass. The electrochemical behavior of ferric stearate electrode was studied by the cyclic voltammetry. The electro-catalytic effects of ferric stearate on H2O2 were also investigated by cyclic voltammetry.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
V. M. García-Orozco ◽  
C. E. Barrera-Díaz ◽  
G. Roa-Morales ◽  
Ivonne Linares-Hernández

The degradation of aqueous solutions containing phenolphthalein was carried out using ozone and electrochemical processes; the two different treatments were performed for 60 min at pH 3, pH 7, and pH 9. The electrochemical oxidation using boron-doped diamond electrodes processes was carried out using three current density values: 3.11 mA·cm−2, 6.22 mA·cm−2, and 9.33 mA·cm−2, whereas the ozone dose was constantly supplied at 5±0.5 mgL−1. An optimal degradation condition for the ozonation treatment is at alkaline pH, while the electrochemical treatment works better at acidic pH. The electrochemical process is twice better compared with ozonation.


Author(s):  
Katelyn Sellgren ◽  
◽  
Christopher Gregory ◽  
Michael Hunt ◽  
Ashkay Raut ◽  
...  

Electrochemical disinfection has gained interest as an alternative to conventional wastewater treatment because of its high effectiveness and environmental compatibility. Two and a half billion people currently live without improved sanitation facilities. Our research efforts are focused on developing and implementing a freestanding, additive-free toilet system that treats and recycles blackwater on site. In this study, we sought to apply electrochemical disinfection to blackwater. We compared commercially available boron-doped diamond (BDD) and mixed metal oxide (MMO) electrodes for disinfection efficiency in E. coli–inoculated model wastewater. The MMO electrodes were found to be more efficient and thus selected for further study with blackwater. The energy required for disinfection by the MMO electrodes increased with the conductivity of the medium, decreased with increased temperature, and was independent of the applied voltage. Fecal contamination considerably increased the energy required for blackwater disinfection compared to model wastewater, demonstrating the need for testing in effluents representing the conditions of the final application.


2007 ◽  
Vol 55 (12) ◽  
pp. 213-219 ◽  
Author(s):  
Y.J. Jung ◽  
B.S. Oh ◽  
J.W. Kang ◽  
M.A. Page ◽  
M.J. Phillips ◽  
...  

The aim of this study was to investigate some aspects of the performance of electrochemical process as an alternative disinfection strategy, while minimising DBPs, for water purification. The study of electrochemical processes has shown free chlorine to be produced, but smaller amounts of stronger oxidants, such as ozone, hydrogen peroxide and OH radicals (•OH), were also generated. The formation of mixed oxidants increased with increasing electric conductivity, but was limited at conductivities greater than 0.6 mS/cm. Using several microorganisms, such as E. coli and MS2 bacteriophage, inactivation kinetic studies were performed. With the exception of free chlorine, the role of mixed oxidants, especially OH radicals, was investigated for enhancement of the inactivation rate. Additionally, the formation and reduction of DBPs was studied by monitoring the concentration of haloacetic acids (HAAs) during the process.


Sign in / Sign up

Export Citation Format

Share Document