Selective oxidation of cyclopentene to glutaraldehyde by H2O2 over Nb-SBA-15

2021 ◽  
Author(s):  
yingmeng qi ◽  
Qi Han ◽  
li wu ◽  
Jun Li

A series of niobium-containing mesoporous materials Nb-SBA-15 have been prepared by sonication–impregnation and hydrothermal process. The dispersion and structural properties of niobium-containing species were systematically characterized by X-ray diffraction, scanning...

In this paper we report single crystal X-ray diffraction studies of urea inclusion compounds containing diacyl peroxides (dioctanoyl peroxide (OP), diundecanoyl peroxide (UP), lauroyl peroxide (LP)) as the guest component. In these inclusion compounds, the host (urea) molecules crystallize in a hexagonal structure that contains linear, parallel, non-intersecting channels (tunnels). The guest (diacyl peroxide) molecules are closely packed inside these channels with a periodic repeat distance that is incommensurate with the period of the host structure along the channel axis. Furthermore, there is pronounced inhomogeneity within the guest structure: within each single crystal, there are regions in which the guest molecules are three-dimensionally ordered, and other regions in which they are only one-dimensionally ordered (along the channel axis). Although it has not proven possible to ‘determine’ the guest structures in the conventional sense, substantial information concerning their average periodicities and their orientational relationships with respect to the host has been deduced from single crystal X-ray diffraction photographs recorded at room temperature. For OP/urea, UP/urea and LP/urea, the guest structure in the three-dimensionally ordered regions is monoclinic, and six types of domain of this monoclinic structure can be identified within each single crystal. The relative packing of diacyl peroxide molecules is the same in each domain, and the different domains are related by 60° rotation about the channel axis. For each of these inclusion compounds, the offset between the ‘heights’ of the guest molecules in adjacent channels is the same ( ca . 4.6 Å (4.6 x 10 -10 m)) within experimental error, suggesting that the relative interchannel packing of the guest molecules is controlled by a property of the diacyl peroxide group. In addition to revealing these novel structural properties, the work discussed in this paper has more general relevance concerning the measurement and interpretation of single crystal X-ray diffraction patterns that are based on more than one three-dimensionally periodic reciprocal lattice. Seven separate reciprocal lattices are required to rationalize the complete X-ray diffraction pattern from each diacyl peroxide/urea crystal studied here.


2014 ◽  
Vol 783-786 ◽  
pp. 1426-1431
Author(s):  
Wang Ryeol Kim ◽  
Min Chul Kwon ◽  
Jung Hoon Lee ◽  
Uoo Chang Jung ◽  
Won Sub Chung

TiAlSiN coatings were deposited on WC-Co metal by using a cathodic arc ion deposition method of cylindrical cathode. We used Ti / Al (50 / 50 at.%) arc target and silicon sputter target. The influence of the nitrogen pressure, TiAl cathode arc current, bias voltage, and deposition temperature on the mechanical and the structural properties of the films were investigated. The structural features of the films were investigation in detail using X-ray diffraction. And coatings were characterized by means of FE-SEM, nanoindentation, Scratch tester, Tribology tester, XRD and XPS. The hardness of the film reached 43 GPa at the cathode arc current of 230 A and decreased with a further increase of the arc current. And the adhesion of the film reached 34 N. The results showed that the TiAlSiN coating exhibited an excellent mechanical properties which application for tools and molds.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


1996 ◽  
Vol 69 (2) ◽  
pp. 194-196 ◽  
Author(s):  
T. R. Thurston ◽  
N. M. Jisrawi ◽  
S. Mukerjee ◽  
X. Q. Yang ◽  
J. McBreen ◽  
...  

1999 ◽  
Vol 562 ◽  
Author(s):  
K. Attenborough ◽  
M. Cerisier ◽  
H. Boeve ◽  
J. De Boeck ◽  
G. Borghs ◽  
...  

ABSTRACTWe have studied the magnetic and structural properties of thin electrodeposited Co and Cu layers grown directly onto (100) n-GaAs and have investigated the influence of a buffer layer. A dominant fourfold anisotropy with a uniaxial contribution is observed in 10 nm Co electrodeposited films on GaAs. An easy axis is observed in the [001] GaAs direction with two hard axes of differing coercivities parallel to the [011] and [011] directions. For thicker films the easy axes in the [001] direction becomes less pronounced and the fourfold anisotropy becomes less dominant. Co films of similar thicknesses deposited onto an electrodeposited Cu buffer layer were nearly isotropic. From X-ray diffraction 21 nm Co layers on GaAs were found to be hcp with the c-axis tending to be in the plane of the film. The anisotropy is ascribed to the Co/GaAs interface and is held responsible for the unique spin-valve properties seen recently in electrodeposited Co/Cu films.


2011 ◽  
Vol 1304 ◽  
Author(s):  
Qingguo Meng ◽  
David C. Doetschman ◽  
Apostolos K. Rizos ◽  
Min-Hong Lee ◽  
Jürgen T. Schulte ◽  
...  

ABSTRACTAdsorption and chemistry of tripropylphosphate (TPP) in mesoporous NaX zeolite, which was templated by cationic templated polymer (polydiallyldimethylammonium chloride, PDADMAC) with two different length chains, was investigated. The structural properties of the zeolites were characterized by X-ray diffraction (XRD) and nitrogen adsorption analysis. The chemical activities of different zeolites toward the decomposition of TPP were determined with solid state 31P NMR spectra. After exposure of zeolites to TPP was sufficient and equilibrium was reached, a stoichiometric amount of water was also adsorbed and hydrolysis was observed. The TPP decomposition yields in different NaX zeolites were compared.


1996 ◽  
Vol 423 ◽  
Author(s):  
Zhizhong Chen ◽  
Kai Yang ◽  
Rong Zhang ◽  
Hongtao Shi ◽  
Youdou Zheng

AbstractIn this paper, we reported experimental results about optical and structural properties of amorphous silicon carbide (α-Si1-xCx). The films of a-Si1-xCx) were grown by CVD on substrate of quartz glass. Optical constants (n-refractive index, a-absorption coefficient, Eg-optical energy band gap) of these films were determined by transmission spectra. The radial distribution functions (RDFs) of α- Sil−xCx) films were drawn out from the data of x-ray diffraction spectra. According to the RDFs, we imagined the statistic scene from which we could obtain the information of atomic radial distribution. The bond lengths and bond numbers of Si-Si, Si-C, and C-C could be also determined by RDFs. From the analysis of Raman spectra, we obtained the information of their vibration state density, and discerned the peaks of bond vibration, which agreed well with the results of α-Si1-xCx) RDF.


2019 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Bilal Abu Sal

This work is devoted to generalize and analyze the previouse results of new photonic-crystalline nanomaterials based on synthetic opals and active dielectrics. Data were characterized by X-ray diffraction and Raman spectroscopy. Active dielectrics infiltrated into the pores of the opal from the melt. The phase structure composition of the infiltrated materials into the pores of the opal matrix were analyzed. The results of x-ray diffraction and Raman spectra allowed to establish the crystal state of active dielectrics in the pores of the opal. The Raman spectra of some opal-active dielectric nanocomposites revealed new bands and changes in band intensities compared to the spectra of single crystals of active dielectrics. Further more, differences in band intensities in the spectra were measured at different spots of the sample‘s surface were observed. The revealed changes were attributed to the formation of new crystalline phases due to the injected dielectrics in opal pores.


Sign in / Sign up

Export Citation Format

Share Document