Electrochromic behavior of fac-tricarbonyl rhenium complexes

2022 ◽  
Author(s):  
Qian-hua Zhou ◽  
Ming-Yue Pan ◽  
Qi He ◽  
Qian Tang ◽  
Cheuk Fai Chow ◽  
...  

This paper aims to investigate the electrochromic properties of tricarbonyl rhenium complexes. Using 4,7-diphenylphenanthroline (L1) and 4,7-di(4-substituted)-1,10-phenanthroline (L2-L5) as bidentate ligands, a series of tricarbonyl rhenium complexes, fac-Re(CO)3(Lx)Cl (x=1-5), were...

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Milan Melník ◽  
Peter Mikuš

Abstract This review has focused on ligand isomers in Pt(II) complexes. There are a variety of inner coordination spheres about the platinum(II) atom (PtN4, PtN2Cl2, PtP2Cl2, PtPNC2, PtPNCl2, PtP2CBr, PtP2CS), build up by mono- and bidentate ligands. The bidentate ligands create a variety of metallocyclic rings. The L–Pt–L bite angle (mean values) open in the sequence: 73.1° (PNP) < 78.7° (NC2C) < 80.4° (NC2N) < 86.4° (PC2P) < 86.7° (PNNP) < 93.0° (CC3S). There are three types of isomers: ligand, mixed – (ligand + distortion), and mixed – (ligand + cis-trans), isomers, which are rarity.


2021 ◽  
Vol 594 ◽  
pp. 73-79
Author(s):  
Xianfeng Wu ◽  
Kai Wang ◽  
Junyu Lin ◽  
Dan Yan ◽  
Zhiyong Guo ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Guillermo García-Díez ◽  
Roger Monreal-Corona ◽  
Nelaine Mora-Diez

The thermodynamic stability of 11 complexes of Cu(II) and 26 complexes of Fe(III) is studied, comprising the ligands pyridoxamine (PM), ascorbic acid (ASC), and a model Amadori compound (AMD). In addition, the secondary antioxidant activity of PM is analyzed when chelating both Cu(II) and Fe(III), relative to the rate constant of the first step of the Haber-Weiss cycle, in the presence of the superoxide radical anion (O2•−) or ascorbate (ASC−). Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. The aqueous environment is modeled by making use of the SMD solvation method in all calculations. This level of theory accurately reproduces the experimental data available. When put in perspective with the stability of various complexes of aminoguanidine (AG) (which we have previously studied), the following stability trends can be found for the Cu(II) and Fe(III) complexes, respectively: ASC < AG < AMD < PM and AG < ASC < AMD < PM. The most stable complex of Cu(II) with PM (with two bidentate ligands) presents a ΔGf0 value of −35.8 kcal/mol, whereas the Fe(III) complex with the highest stability (with three bidentate ligands) possesses a ΔGf0 of −58.9 kcal/mol. These complexes can significantly reduce the rate constant of the first step of the Haber-Weiss cycle with both O2•− and ASC−. In the case of the copper-containing reaction, the rates are reduced up to 9.70 × 103 and 4.09 × 1013 times, respectively. With iron, the rates become 1.78 × 103 and 4.45 × 1015 times smaller, respectively. Thus, PM presents significant secondary antioxidant activity since it is able to inhibit the production of ·OH radicals. This work concludes a series of studies on secondary antioxidant activity and allows potentially new glycation inhibitors to be investigated and compared relative to both PM and AG.


2017 ◽  
Vol 2017 (3) ◽  
pp. 741-751 ◽  
Author(s):  
Suresh Raju ◽  
Christian A. M. R. van Slagmaat ◽  
Martin Lutz ◽  
Hendrik Kleijn ◽  
Johann T. B. H. Jastrzebski ◽  
...  
Keyword(s):  

2020 ◽  
Vol 49 (11) ◽  
pp. 3480-3487 ◽  
Author(s):  
Xinlong Yan ◽  
Qing Dong ◽  
Ying Li ◽  
Lizhen Meng ◽  
Zhiqiang Hao ◽  
...  

An efficient method for direct oxygenation of primary arylamines to nitriles and amides with switchable selectivity was developed using N,O-bidentate Ru3 clusters as catalysts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Cao ◽  
He Zhao ◽  
Rongqing Guan ◽  
Huanfeng Jiang ◽  
Pierre. H. Dixneuf ◽  
...  

AbstractDespite the widespread applications of 2-(hetero)aryl N-heteroarenes in numerous fields of science and technology, universal access to such compounds is hampered due to the lack of a general method for their synthesis. Herein, by a H2O-mediated H2-evolution cross-coupling strategy, we report an iridium(III)-catalyzed facile method to direct α-arylation of N-heteroarenes with both aryl and heteroaryl boronic acids, proceeding with broad substrate scope and excellent functional compatibility, oxidant and reductant-free conditions, operational simplicity, easy scalability, and no need for prefunctionalization of N-heteroarenes. This method is applicable for structural modification of biomedical molecules, and offers a practical route for direct access to 2-(hetero)aryl N-heteroarenes, a class of potential cyclometalated C^N ligands and N^N bidentate ligands that are difficult to prepare with the existing α-C-H arylation methods, thus filling an important gap in the capabilities of synthetic organic chemistry.


Sign in / Sign up

Export Citation Format

Share Document