Heterojunction Photocatalysts for Artificial Nitrogen Fixation: Fundamentals, Latest Advances and Future Perspectives

Nanoscale ◽  
2021 ◽  
Author(s):  
Jiale Lee ◽  
Lling-Lling Tan ◽  
Siang-Piao Chai

As an indispensable energy source, ammonia plays an essential role in agriculture and various industries. Given that the current ammonia production is still dominated by the energy-intensive and high carbon...

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Seokwoo Choe ◽  
Sung Min Kim ◽  
Yeji Lee ◽  
Jin Seok ◽  
Jiyong Jung ◽  
...  

AbstractPhotocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.


2019 ◽  
Vol 32 (9) ◽  
pp. 1196-1209
Author(s):  
Zaiyong Si ◽  
Qianqian Yang ◽  
Rongrong Liang ◽  
Ling Chen ◽  
Dasong Chen ◽  
...  

Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-41
Author(s):  
Aida Rodriguez-Garcia ◽  
Jacqueline Oliva-Ramirez ◽  
Claudia Bautista-Flores ◽  
Samira Hosseini

The past few decades have shown significant advancement as complex in vitro humanized systems have substituted animal trials and 2D in vitro studies. 3D humanized platforms mimic the organs of interest with their stimulations (physical, electrical, chemical, and mechanical). Organ-on-chip devices, including in vitro modelling of 3D organoids, 3D microfabrication, and 3D bioprinted platforms, play an essential role in drug discovery, testing, and assessment. In this article, a thorough review is provided of the latest advancements in the area of organ-on-chip devices targeting liver, kidney, lung, gut, heart, skin, and brain mimicry devices for drug discovery, development, and/or assessment. The current strategies, fabrication methods, and the specific application of each device, as well as the advantages and disadvantages, are presented for each reported platform. This comprehensive review also provides some insights on the challenges and future perspectives for the further advancement of each organ-on-chip device.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 406-408 ◽  
Author(s):  
Pei-Chung Chen

Abstract Two different cyanobacteria, Anabaena CH 1 and CH2, were isolated from Taiwan paddy soils. Both strains can grow well with daily dilution method. Anabaena CH1 shows a blue-green color and Anabaena CH2 a green brownish one. Nitrogenase activity decreased as cultures were transferred from light to dark. When a darkened culture was placed again into the light, nitrogenase activity recovered within two hours, but not in the presence of chloramphenicol. Energy supply for nitrogenase within both strains was different. Nitrogenase activity of Anabaena CH1 was light-dependent and oxygen in heterocyst was exhausted through oxyhydrogen reaction. Except photosynthesis, respiration may be used as energy source for nitrogenase in Anabaena CH2. Respiration was the major one to protect nitrogenase against oxygen.


2020 ◽  
Vol 8 (10) ◽  
pp. 4978-4995 ◽  
Author(s):  
Yewei Huang ◽  
Nan Zhang ◽  
Zhenjun Wu ◽  
Xiuqiang Xie

Fundamentals and future perspectives on artificial N2 fixation over bismuth-based photocatalysts have been discussed.


2018 ◽  
Vol 207 ◽  
pp. 192-202 ◽  
Author(s):  
Pamela J. Welz ◽  
Jean-Baptiste Ramond ◽  
Lorenz Braun ◽  
Surendra Vikram ◽  
Marilize Le Roes-Hill

2022 ◽  
Vol 8 (2) ◽  
pp. 49-58
Author(s):  
Grazielle Cristina de Araujo ◽  
Jair Antonio Cruz Siqueira ◽  
Loreci Zanardini ◽  
João Felipe Peixoto Marques ◽  
Rafaela Lazzarin ◽  
...  

There was a significant increase in the concern with climate issues, among them highlighted as the derivation of greenhouse gases from the burning fossil fuels, leading several research centers and researchers to seek new sources of less polluting energy, independent of the burn-based matrix of fuels. In this context, the present work has as main presenter a literature review, perspective and comparisons regarding the use of hydrogen as a clean energy source, presenting three main ways of obtaining it: a) through electrolysis using renewable sources; b) biohydrogen production, based on the photosynthesis of plants and algae; c) production through biodigesters.


Sign in / Sign up

Export Citation Format

Share Document