CO2 Reduction to CH4 on Cu-doped Phosphorene: A First-Principles Study

Nanoscale ◽  
2021 ◽  
Author(s):  
Hongping Zhang ◽  
Run Zhang ◽  
Chenghua Sun ◽  
Yan Jiao ◽  
Yaping Zhang

Electrochemical carbon dioxide reduction (CRR) to fuels is one of the significant challenges in materials science and chemistry. Recently, single metal atom catalysts based on 2D materials provide a promising...

Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


2018 ◽  
Vol 150 ◽  
pp. 33-41 ◽  
Author(s):  
Weiwei Ju ◽  
Tongwei Li ◽  
Qingxiao Zhou ◽  
Haisheng Li ◽  
Xiaohong Li ◽  
...  

Author(s):  
Liu Guo ◽  
Rui Li ◽  
Jiawei Jiang ◽  
Ji-Jun Zou ◽  
Wenbo Mi

Single-atom catalysts with magnetic elements as the active center have been widely exploited for efficient oxygen evolution reaction (OER) electrocatalyst. Here, different contents of transition metal atom Mn adsorbed on...


2022 ◽  
pp. 152472
Author(s):  
Run Zhang ◽  
Yaping Zhang ◽  
Laibao Liu ◽  
Xiaopeng Li ◽  
Youhong Tang ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 268 ◽  
pp. 129317
Author(s):  
Jing Yang ◽  
Kuan Eng Johnson Goh ◽  
Zhi Gen Yu ◽  
Rui En Wong ◽  
Yong-Wei Zhang

2020 ◽  
Vol 8 (31) ◽  
pp. 15936-15941 ◽  
Author(s):  
Pengda An ◽  
Lai Wei ◽  
Huangjingwei Li ◽  
Baopeng Yang ◽  
Kang Liu ◽  
...  

Enhanced carbon dioxide reduction reaction (CO2RR) with suppressed HER was achieved on polytetrafluoroethylene (PTFE) coated Cu nanoneedles (CuNNs).


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 789
Author(s):  
Gang-Juan Lee ◽  
Yu-Hong Hou ◽  
Hsin-Ting Huang ◽  
Wenmin Wang ◽  
Cong Lyu ◽  
...  

A novel heterostructure consisting of Ru and Cu co-doped ZnS nanopowders (RCZS) into a MoS2-graphene hybrid (MSG) is successfully prepared by the microwave-assisted solvothermal approach. RCZS nanopowders are fabricated on the surface of MSG, which produces a nanoscale interfacial between RCZS and MSG. As the photo-excited electrons of RCZS can easily migrate to MoS2 through graphene by hindering the electron and hole (e– and h+) recombination, the photocatalytic activity could be improved by effective charge transfer. As RCZS are anchored onto the MSG, the photoluminescence intensity of the chalcogenide composite photocatalyst obviously decreases. In addition, a quaternary ruthenium and copper-based chalcogenide RCZS/MSG is able to improve the harvest and utilization of light. With the increase in the concentrations of Ru until 4 mol%, the band gap significantly decreases from 3.52 to 2.73 eV. At the same time, moderate modification by ruthenium can decrease the PL intensity compared to the pristine CZS/MSG sample, which indicates the enhancement of e– and h+ separation by Ru addition. The photocatalytic activity of as-synthesized chalcogenide composite photocatalysts is evaluated by the photocatalytic carbon dioxide reduction. Optimized operation conditions for carbon dioxide reduction have been performed, including the concentration of NaOH solution, the amount of RCZS/MSG photocatalyst, and the content of co-doped ruthenium. The doping of ruthenium would efficiently improve the performance of the photocatalytic activity for carbon dioxide reduction. The optimal conditions, such as the concentration of 2 M NaOH and the 0.5RCZS/MSG dosage of 0.05 g L–1, provide the maximum methane gas yield of 58.6 μmol h−1 g–1.


2018 ◽  
Vol 20 (43) ◽  
pp. 27611-27620 ◽  
Author(s):  
Armin Taheri ◽  
Carlos Da Silva ◽  
Cristina H. Amon

A first-principles study is conducted to investigate the effect of biaxial tensile strain on phonon properties and thermal conductivity of buckled phosphorene and arsenene, novel two-dimensional (2D) materials of group-VA.


Sign in / Sign up

Export Citation Format

Share Document