Determining Michael Acceptor Reactivity from Kinetic, Mechanistic, and Computational Analysis for the Base-catalyzed Thiol-Michael Reaction

2021 ◽  
Author(s):  
Sijia Huang ◽  
Kangmin Kim ◽  
Grant Musgrave ◽  
Marcus Sharp ◽  
Jasmine Sinha ◽  
...  

A combined experimental and computational study of the reactivities of seven commonly used Michael acceptors paired with two thiols within the framework of photobase-catalyzed thiol-Michael reactions is reported. The kinetic...

2021 ◽  
Author(s):  
Susanne Fischer ◽  
Simon Renner ◽  
Adrian Daniel Böse ◽  
Christian Slugovc

Herein, we study the activity of methoxysubstituted arylphosphines (4-methoxy-phenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP) in catalyzing oxa-Michael additions in comparison to commonly used triphenylphosphine (TPP). Acrylonitrile, acryl amide and divinyl sulfone are used as Michael acceptors and propargyl alcohol, allyl alcohol, n-propanol and i-propanol are assessed as Michael donors. In many cases, catalyst loadings of only 1 mol% in respect to the Michael acceptor are sufficient to provide full conversion towards the Michael adduct in 24 h at room temperature. Generally, TMTPP is the most active catalyst in all cases. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine – Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was evaluated and electron richest TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa-Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80 °C resulted in macromolecules containing a considerable share of Rauhut-Currier type repeat units and consequently lower molar masses were obtained.


2021 ◽  
Author(s):  
Susanne Fischer ◽  
Simon Renner ◽  
Adrian Daniel Böse ◽  
Christian Slugovc

Herein, we study the activity of methoxysubstituted arylphosphines (4-methoxy-phenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP) in catalyzing oxa-Michael additions in comparison to commonly used triphenylphosphine (TPP). Acrylonitrile, acryl amide and divinyl sulfone are used as Michael acceptors and propargyl alcohol, allyl alcohol, n-propanol and i-propanol are assessed as Michael donors. In many cases, catalyst loadings of only 1 mol% in respect to the Michael acceptor are sufficient to provide full conversion towards the Michael adduct in 24 h at room temperature. Generally, TMTPP is the most active catalyst in all cases. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine – Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was evaluated and electron richest TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa-Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80 °C resulted in macromolecules containing a considerable share of Rauhut-Currier type repeat units and consequently lower molar masses were obtained.


2021 ◽  
Vol 17 ◽  
pp. 1689-1697
Author(s):  
Susanne M Fischer ◽  
Simon Renner ◽  
A Daniel Boese ◽  
Christian Slugovc

Electron-rich triarylphosphines, namely 4-(methoxyphenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP), outperform commonly used triphenylphosphine (TPP) in catalyzing oxa-Michael additions. A matrix consisting of three differently strong Michael acceptors and four alcohols of varying acidity was used to assess the activity of the three catalysts. All test reactions were performed with 1 mol % catalyst loading, under solvent-free conditions and at room temperature. The results reveal a decisive superiority of TMTPP for converting poor and intermediate Michael acceptors such as acrylamide and acrylonitrile and for converting less acidic alcohols like isopropanol. With stronger Michael acceptors and more acidic alcohols, the impact of the more electron-rich catalysts is less pronounced. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine–Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was also evaluated and the most electron-rich TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa-Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80 °C resulted in macromolecules containing a considerable share of Rauhut–Currier-type repeat units and consequently lower molar masses were obtained.


2020 ◽  
Vol 24 (7) ◽  
pp. 746-773
Author(s):  
Péter Bakó ◽  
Tamás Nemcsok ◽  
Zsolt Rapi ◽  
György Keglevich

: Many catalysts were tested in asymmetric Michael additions in order to synthesize enantioenriched products. One of the most common reaction types among the Michael reactions is the conjugated addition of malonates to enones making it possible to investigate the structure–activity relationship of the catalysts. The most commonly used Michael acceptors are chalcone, substituted chalcones, chalcone derivatives, cyclic enones, while typical donors may be dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, di-tert-butyl and dibenzyl malonates. This review summarizes the most important enantioselective catalysts applied in these types of reactions.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 97
Author(s):  
Shamsunnahar Khushi ◽  
Angela A. Salim ◽  
Ahmed H. Elbanna ◽  
Laizuman Nahar ◽  
Robert J. Capon

Thorectandra choanoides (CMB-01889) was prioritized as a source of promising new chemistry from a library of 960 southern Australian marine sponge extracts, using a global natural products social (GNPS) molecular networking approach. The sponge was collected at a depth of 45 m. Chemical fractionation followed by detailed spectroscopic analysis led to the discovery of a new tryptophan-derived alkaloid, thorectandrin A (1), with the GNPS cluster revealing a halo of related alkaloids 1a–1n. In considering biosynthetic origins, we propose that Thorectandrachoanoides (CMB-01889) produces four well-known alkaloids, 6-bromo-1′,8-dihydroaplysinopsin (2), 6-bromoaplysinopsin (3), aplysinopsin (4), and 1′,8-dihydroaplysinopsin (10), all of which are susceptible to processing by a putative indoleamine 2,3-dioxygenase-like (IDO) enzyme to 1a–1n. Where the 1′,8-dihydroalkaloids 2 and 10 are fully transformed to stable ring-opened thorectandrins 1 and 1a–1b, and 1h–1j, respectively, the conjugated precursors 3 and 4 are transformed to highly reactive Michael acceptors that during extraction and handling undergo complete transformation to artifacts 1c–1g, and 1k–1n, respectively. Knowledge of the susceptibility of aplysinopsins as substrates for IDOs, and the relative reactivity of Michael acceptor transformation products, informs our understanding of the pharmaceutical potential of this vintage marine pharmacophore. For example, the cancer tissue specificity of IDOs could be exploited for an immunotherapeutic response, with aplysinopsins transforming in situ to Michael acceptor thorectandrins, which covalently bind and inhibit the enzyme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ömer Akbal ◽  
Hakan F. Öztop ◽  
Nidal H. Abu-Hamdeh

Purpose The purpose of this paper is to make a three-dimensional computational analysis of melting in corrugated pipe inserted system filled with phase change material (PCM). The system was heated from the inner pipe, and temperature of the outer pipe was lower than that of inner pipe. Different geometrical ratio cases and two different temperature differences were tested for their effect on melting time. Design/methodology/approach A computational analysis through a pipe with corrugated pipe filled with PCM is analyzed. Finite volume method was applied with the SIMPLE algorithm method to solve the governing equations. Findings The results indicate that the geometrical parameters can be used to control the melting time inside the heat exchanger which, in turn, affect the energy efficiency. The fastest melting time is seen in Case 4 at the same temperature difference which is the major observation of the current work. Originality/value Originality of this work is to perform a three-dimensional analysis of melting of PCM in a corrugated pipe inserted pipe.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


2017 ◽  
Vol 8 (2) ◽  
pp. 1613-1620 ◽  
Author(s):  
Andrea Gualandi ◽  
Elia Matteucci ◽  
Filippo Monti ◽  
Andrea Baschieri ◽  
Nicola Armaroli ◽  
...  

An iridium(iii) phenyl-tetrazole complex is a versatile catalyst for a new photocatalytic Michael reaction.


2021 ◽  
Author(s):  
Sajal Katare ◽  
Nagendra P. Yadav

Abstract This paper focuses the computational study of non-premixed combustion in a scramjet combustor. The wedge shaped strut injector was used in the combustion process. In order to investigate the flame holding mechanism of the wedge shaped strut in supersonic flow, the two-dimensional coupled implicit RANS equations, the standard k-ε turbulence model and the finite-rate/eddy-dissipation reaction model are introduced to simulate the flow field of the hydrogen fueled scramjet combustor with a strut flame holder under different conditions. The static pressure of the case under the engine ignition condition is much higher than that of the case under the cold flow condition. The reflection of shock waves improves the mixing of hydrogen with the stream of inlet air and thus increases combustion efficiency. The mass flow rate of air is optimized for the best performance of engine.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 814
Author(s):  
Katia Bacha ◽  
Kawther Aguibi ◽  
Jean-Pierre Mbakidi ◽  
Sandrine Bouquillon

We developed a synthesis of chiral ionic liquids from proline and one of its derivatives. Nine chiral ionic liquids were synthesized with yields from 78% to 95%. These synthesized ionic liquids played two roles in Michael reactions, as solvents, and as basic catalysts, where the ionic phase could also be reused at least five times without loss of activity. The yields up to 99% were improved by increasing the amount of dimethylmalonate from 1.2 equivalents to 3 or 4 equivalents. Furthermore, the reaction time could be reduced from 24 h to 45 min through microwaves activation.


Sign in / Sign up

Export Citation Format

Share Document