Releasable antimicrobial polymer-silk coatings for combating multidrug-resistant bacteria

2021 ◽  
Author(s):  
Erna Wulandari ◽  
Rachel Budhisatria ◽  
Alexander H. Soeriyadi ◽  
Mark Willcox ◽  
Cyrille Boyer ◽  
...  

Controlled release of synthetic cationic antimicrobial polymers from silk-based coating for preventing bacterial biofilm formation on the surface and for killing planktonic bacteria cells.

2019 ◽  
Vol 20 (9) ◽  
pp. 2121 ◽  
Author(s):  
Jastrzebska ◽  
Mellea ◽  
Salerno ◽  
Grzes ◽  
Siergiejczyk ◽  
...  

We report here the reaction of in situ prepared PhSeZnCl with steroid derivatives having an epoxide as an electrophilic functionalization. The corresponding ring-opening reaction resulted to be regio- and stereoselective affording to novel phenylselenium-substituted steroids. Assessment of their antibacterial properties against multidrug-resistant bacteria, such as Pseudomonas aeruginosa Xen 5 strain, indicates an interesting bactericidal activity and their ability to prevent bacterial biofilm formation.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 652 ◽  
Author(s):  
Angela Di Somma ◽  
Antonio Moretta ◽  
Carolina Canè ◽  
Arianna Cirillo ◽  
Angela Duilio

The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 761
Author(s):  
Xiaomin Guo ◽  
Tiantian Yan ◽  
Jing Rao ◽  
Xin Yue ◽  
Xiong Pei ◽  
...  

The dramatic increase in antimicrobial resistance (AMR) highlights an urgent need to develop new antimicrobial therapies. Thus, antimicrobial peptides (AMPs) have emerged as promising novel antibiotic alternatives. Feleucin-K3 is an amphiphilic α-helical nonapeptide that has powerful antimicrobial activity. In our previous study, it was found that the fourth residue of Feleucin-K3 is important for antimicrobial activity. After α-(4-pentenyl)-Ala was introduced into this position, both the antimicrobial activity and stability were greatly improved. Herein, to improve the limitations of Feleucin-K3, this unnatural amino acid was further introduced into different positions of Feleucin-K3. Among these synthetic Feleucin-K3 analogs, the N-terminal-substituted analog Feleucin-K65 (K65) and C-terminal-substituted analog Feleucin-K70 (K70) had preferable antimicrobial activity. In particular, their antimicrobial activities against multidrug-resistant bacteria were more potent than that of antibiotics. The stabilities of these peptides in salt and serum environments were improved compared with those of Feleucin-K3. In addition, these analogs had low hemolytic activity and AMR. More importantly, they effectively inhibited biofilm formation and exhibited considerable efficacy compared with traditional antibiotics against biofilm infection caused by methicillin-resistant Staphylococcus aureus (MRSA). In antimicrobial mechanism studies, K65 and K70 mainly permeated the outer membrane and depolarized the cytoplasmic membrane, resulting in cellular component leakage and cell death. In summary, analogs K65 and K70 are potential antimicrobial alternatives to solve the antibiotic crisis.


Sign in / Sign up

Export Citation Format

Share Document