scholarly journals Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies

RSC Advances ◽  
2021 ◽  
Vol 11 (47) ◽  
pp. 29859-29869
Author(s):  
Pushparani Micheal Raj ◽  
Laurent Barbe ◽  
Martin Andersson ◽  
Milena De Albuquerque Moreira ◽  
Dörthe Haase ◽  
...  

Left – A schematic view of the XAS microfluidic set up at the beamline; fluorescence detector at 90° angle to the X-ray beam (green line); right – microfluidic device setup on Balder beamline mounted perpendicular to beam path.

1993 ◽  
Vol 327 ◽  
Author(s):  
Rohini Raghunathan ◽  
Rina Chowdhury ◽  
Jagdish Narayan

AbstractCubic β-SiC was processed under conditions of self-propagating high-temperature synthesis, based on the exothermic reaction between elemental Si and C powders. The set up for the synthesis of SiC using a mixture of Si and C is described. X-Ray and Raman spectroscopy studies were performed to characterize the quality of the β-SiC produced using the new set up. Scanning Electron Microscopy and Transmission Electron Microscopy studies were also carried out to study the mechanism of the formation of β-SiC from the elemental powders. The density of the compact and grain size of the graphite was found to be critical in the formation of the SiC. Diamond seeds were also implanted on the SiC pellet while compaction and this implanted diamond provided the necessary seed for the growth of a thick diamond film. The adhesion of the film is good because of its growth from the implanted diamond. Diamond films were grown on SiC using HFCVD. The quality and the adhesion of the diamond films on SiC were studied using SEM.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


2021 ◽  
Vol 11 (4) ◽  
pp. 1446
Author(s):  
Jacopo Orsilli ◽  
Anna Galli ◽  
Letizia Bonizzoni ◽  
Michele Caccia

Among the possible variants of X-Ray Fluorescence (XRF), applications exploiting scanning Macro-XRF (MA-XRF) are lately widespread as they allow the visualization of the element distribution maintaining a non-destructive approach. The surface is scanned with a focused or collimated X-ray beam of millimeters or less: analyzing the emitted fluorescence radiation, also elements present below the surface contribute to the elemental distribution image obtained, due to the penetrative nature of X-rays. The importance of this method in the investigation of historical paintings is so obvious—as the elemental distribution obtained can reveal hidden sub-surface layers, including changes made by the artist, or restorations, without any damage to the object—that recently specific international conferences have been held. The present paper summarizes the advantages and limitations of using MA-XRF considering it as an imaging technique, in synergy with other hyperspectral methods, or combining it with spot investigations. The most recent applications in the cultural Heritage field are taken into account, demonstrating how obtained 2D-XRF maps can be of great help in the diagnostic applied on Cultural Heritage materials. Moreover, a pioneering analysis protocol based on the Spectral Angle Mapper (SAM) algorithm is presented, unifying the MA-XRF standard approach with punctual XRF, exploiting information from the mapped area as a database to extend the comprehension to data outside the scanned region, and working independently from the acquisition set-up. Experimental application on some reference pigment layers and a painting by Giotto are presented as validation of the proposed method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amara Khan ◽  
Andrea Markus ◽  
Thomas Rittmann ◽  
Jonas Albers ◽  
Frauke Alves ◽  
...  

AbstractX-ray based lung function (XLF) as a planar method uses dramatically less X-ray dose than computed tomography (CT) but so far lacked the ability to relate its parameters to pulmonary air volume. The purpose of this study was to calibrate the functional constituents of XLF that are biomedically decipherable and directly comparable to that of micro-CT and whole-body plethysmography (WBP). Here, we developed a unique set-up for simultaneous assessment of lung function and volume using XLF, micro-CT and WBP on healthy mice. Our results reveal a strong correlation of lung volumes obtained from radiographic XLF and micro-CT and demonstrate that XLF is superior to WBP in sensitivity and precision to assess lung volumes. Importantly, XLF measurement uses only a fraction of the radiation dose and acquisition time required for CT. Therefore, the redefined XLF approach is a promising tool for preclinical longitudinal studies with a substantial potential of clinical translation.


Sign in / Sign up

Export Citation Format

Share Document