scholarly journals Selective ozone activation of phenanthrene in liquid CO2

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 626-630
Author(s):  
Honghong Shi ◽  
Michael Lundin ◽  
Andrew Danby ◽  
Eden P. Go ◽  
Abhimanyu Patil ◽  
...  
Keyword(s):  

Facile phenanthrene (as a polyaromatic model compound) ozonolysis to oxygenated material precursors has been demonstrated in liquid CO2.

1992 ◽  
Vol 57 (11) ◽  
pp. 2272-2278 ◽  
Author(s):  
Václav Koula ◽  
Daria Kučová ◽  
Jiří Gasparič

The combination of ion-pair extraction and differential pulse polarography is shown to be a method suitable for the determination of 10-7 mol l-1 concentrations of organic bases of quaternary ammonium compounds. Orange II (4-[2-hydroxy-1-naphtyl]azobenzenesulfonic acid) was found to be an appropriate polarographically active counter-ion. The proposed method was used for the determination of tetrapentylammonium bromide (as model compound), Septonex ([1-(ethoxycarbonyl)-pentadecyl]trimethylammonium bromide) and codeine.


2018 ◽  
Vol 196 ◽  
pp. 04005
Author(s):  
Irina Stepina ◽  
Irina Kotlyarova

The difficulty of wood protection from biocorrosion and fire is due to the fact that modifiers in use are washed out from the surface of the substrate under the influence of environmental factors. This results in a rapid loss of the protective effect and other practically important wood characteristics caused by the modification. To solve this problem is the aim of our work. Here, monoethanolaminoborate is used as a modifier, where electron-donating nitrogen atom provides a coordination number equal to four to a boron atom, which determines the hydrolytic stability of the compounds formed. Alpha-cellulose ground mechanically to a particle size of 1 mm at most was used as a model compound for the modification. X-ray photoelectron spectra were recorded on the XSAM-800 spectrometer (Kratos, UK). Prolonged extraction of the modified samples preceded the registration of the photoelectron spectra to exclude the fixation of the modifier molecules unreacted with cellulose. As a result of the experiment, boron and nitrogen atoms were found in the modified substrate, which indicated the hydrolytic stability of the bonds formed between the modifier molecules and the substrate. Therefore monoethanolaminoborate can be considered as a non-extractable modifier for wood-cellulose materials.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Qiaoqiao Ye ◽  
Tomoya Yokoyama

AbstractA non-phenolic C6-C2-type lignin model compound with the β-O-4 bond, 2-(2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanol (I), was acidolyzed in aqueous 82% 1,4-dioxane containing HBr, HCl, or H2SO4 with a concentration of 0.2 mol/L at 85 ℃ to examine the differences between these acidolyses. Compound I primarily converted to an enol ether compound, 1-(2-methoxyphenoxy)-2-(3,4-dimethoxyphenyl)ethene (II), via the benzyl cation followed by acidolytic β-O-4 bond cleavage regardless of the acid-type, although the disappearance rates of compound I were remarkably different (HBr > HCl >> H2SO4). Acidolyses of compound II using these acids under the same conditions showed a similar tendency, but the rate differences were much smaller than in the acidolyses of compound I. Acidolyses of the α-methyl-etherified derivative of compound I (I-α-OMe) using these acids under the same conditions suggested that the formation rates of the benzyl cation from compound I-α-OMe (also from compound I) are not largely different between the acidolyses using these acids, but those of compound II from the benzyl cation are remarkably different. Acidolysis of the α-bromo-substituting derivative of compound I (I-α-Br) using HBr under the same conditions showed a characteristic action of Br¯ in the acidolysis. Br¯ adds to the benzyl cation generated from compound I or I-α-OMe to afford unstable compound I-α-Br, resulting in acceleration of the formation of compound II and of the whole acidolysis reaction.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


2004 ◽  
Vol 77 (3) ◽  
pp. 512-541 ◽  
Author(s):  
Geert Heideman ◽  
Rabin N. Datta ◽  
Jacques W. M. Noordermeer ◽  
Ben van Baarle

Abstract This review provides relevant background information about the vulcanization process, as well as the chemistry of thiuram- and sulfenamide-accelerated sulfur vulcanization with emphasis on the role of activators, to lay a base for further research. It commences with an introduction of sulfur vulcanization and a summary of the reaction mechanisms as described in literature, followed by the role of activators, particularly ZnO. The various possibilities to reduce ZnO levels in rubber compounding, that have been proposed in literature, are reviewed. A totally different approach to reduce ZnO is described in the paragraphs about the various possible roles of multifunctional additives (MFA) in rubber vulcanization. Another paragraph is dedicated to the role of amines in rubber vulcanization, in order to provide some insight in the underlying chemical mechanisms of MFA systems. Furthermore, an overview of Model Compound Vulcanization (MCV) with respect to different models and activator/accelerator systems is given. In the last part of this review, the various functions of ZnO in rubber are summarized. It clearly reveals that the role of ZnO and zinc compounds is very complex and still deserves further clarification.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2072
Author(s):  
Maria Antonia Tănase ◽  
Maria Marinescu ◽  
Petruta Oancea ◽  
Adina Răducan ◽  
Catalin Ionut Mihaescu ◽  
...  

In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders’ antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098062
Author(s):  
Shuangping Ma ◽  
Qingjun Ding ◽  
Fen Zhou ◽  
Huaxiong Zhu

The chemical modifications of lignin-based superplasticizers have attracted extensive attentions during recent years. The comprehending of the structure-activity relationship of lignin-based superplasticizer is important to promote the modification and application research of lignin resources. However, lignin features complex and variable molecular structure, which is not conducive to study on structure-activity relationship of lignin-based superplasticizer as well as development and application of new lignin-based superplasticizer. However, the related research work can be simplified by selecting small molecular compound with appropriate molecular structure as the lignin model compound. This article intends to study the structure-activity relationship of lignin-based superplasticizer by using dihydroeugenol as the lignin model compound. Through the substitution of lignin by dihydroeugenol during the synthesis process, a model compound lignin-based superplasticizer (DAFS) was synthesized. The adsorption and dispersion properties of this superplasticizer and reference sample (LAFS) were investigated by fluidity test, Zeta-potential measurement, Total organic carbon analysis and others. The results suggest that the adsorption behavior of both DAFS and LAFS conformed to the Langmuir isotherms and Pseudo-second order kinetic. In cement paste, added with 1 g/L of LAFS and DAFS, Zeta potential were reduced from +3.5 to −15.2 mV and −18.7 mV, respectively. The substitution of lignin by dihydroeugenol has no significantly influence on the dispersive property, but differences on rheological properties which need to be optimized in the future. All the tests confirmed that dihydroeugenol is suitable to replace lignin on exploring the structure-activity relationship of lignin-based superplasticizer. This research work provides new insight on model study of lignin-based superplasticizer.


ChemBioChem ◽  
2021 ◽  
Author(s):  
Robert Lassfolk ◽  
Sara Bertuzzi ◽  
Ana Ardá ◽  
Johan Wärnå ◽  
Jesús Jiménez‐Barbero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document