scholarly journals A novel aggregation–induced enhanced emission aromatic molecule: 2-aminophenylboronic acid dimer

2021 ◽  
Author(s):  
Xiaopei Li ◽  
Dongdong Wang ◽  
Yongjie Zhang ◽  
Wenqi Lu ◽  
Songqiu Yang ◽  
...  

Aggregation-induced enhanced emission (AIEE) molecules have significant applications in optoelectronics, biomedical probes and chemical sensors, and their reports have been consistently explosive since the concept of AIEE was proposed. Most...

VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 355-362 ◽  
Author(s):  
Marie Urban ◽  
Alban Fouasson-Chailloux ◽  
Isabelle Signolet ◽  
Christophe Colas Ribas ◽  
Mathieu Feuilloy ◽  
...  

Abstract. Summary: Background: We aimed at estimating the agreement between the Medicap® (photo-optical) and Radiometer® (electro-chemical) sensors during exercise transcutaneous oxygen pressure (tcpO2) tests. Our hypothesis was that although absolute starting values (tcpO2rest: mean over 2 minutes) might be different, tcpO2-changes over time and the minimal value of the decrease from rest of oxygen pressure (DROPmin) results at exercise shall be concordant between the two systems. Patients and methods: Forty seven patients with arterial claudication (65 + / - 7 years) performed a treadmill test with 5 probes each of the electro-chemical and photo-optical devices simultaneously, one of each system on the chest, on each buttock and on each calf. Results: Seventeen Medicap® probes disconnected during the tests. tcpO2rest and DROPmin values were higher with Medicap® than with Radiometer®, by 13.7 + / - 17.1 mm Hg and 3.4 + / - 11.7 mm Hg, respectively. Despite the differences in absolute starting values, changes over time were similar between the two systems. The concordance between the two systems was approximately 70 % for classification of test results from DROPmin. Conclusions: Photo-optical sensors are promising alternatives to electro-chemical sensors for exercise oximetry, provided that miniaturisation and weight reduction of the new sensors are possible.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshitake Masuda

AbstractCold crystallization of SnO2 was realized in aqueous solutions, where crystal growth was controlled to form SnO2 (101) nanosheet assembled films for devices such as chemical sensors. The nanosheets grew directly on a fluorine-doped tin oxide substrate without a seed layer or a buffer layer. The nanosheets had a thickness of 5–10 nm and an in-plane size of 100–1600 nm. Moreover, the large flat surface of the (101) facet was metastable. The thickness of the SnO2 (101) nanosheet assembled film was approximately 800 nm, and the film had a gradient structure that contained many connected nanosheets. TEM results revealed that the predominate branch angles between any two connected nanosheets were 90° and 46.48°, corresponding to type I and type II connections, respectively. These connections were consistent with the calculations based on crystallography. Crystallographic analysis clarified the characteristic crystal growth of the SnO2 (101) nanosheet assembled film in the aqueous solution. Furthermore, we demonstrate that the metastable (101) facet can be exploited to control the rate of crystal growth by adjusting the etching condition.


Nanoscale ◽  
2020 ◽  
Author(s):  
Congxi Huang ◽  
Guorui Chen ◽  
Ardo Nashalian ◽  
Jun Chen

Chemical sensors allow for continuous detection and analysis of underexplored molecules on the human body and the surroundings, which hold bright applications on human healthcare and environmental protection. With the...


2020 ◽  
Author(s):  
Anna N. Berlina ◽  
Nadezhda S. Komova ◽  
Anatoly V. Zherdev ◽  
Boris B. Dzantiev

Sign in / Sign up

Export Citation Format

Share Document