scholarly journals The role of cooling rate in crystallization-driven block copolymer self-assembly

2021 ◽  
Author(s):  
Shaofei Song ◽  
Jingjie Jiang ◽  
Ehsan Nikbin ◽  
Jane Howe ◽  
Ian Manners ◽  
...  

Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool...

2020 ◽  
Vol 1000 ◽  
pp. 324-330
Author(s):  
Sri Agustina ◽  
Masayoshi Tokuda ◽  
Hideto Minami ◽  
Cyrille Boyer ◽  
Per B. Zetterlund

The self-assembly of block copolymers has attracted attention for many decades because it can yield polymeric nanoobjects with a wide range of morphologies. Membrane emulsification is a fairly novel technique for preparation of various types of emulsions, which relies on the dispersed phase passing through a membrane in order to effect droplet formation. In this study, we have prepared polymeric nanoparticles of different morphologies using self-assembly of asymmetric block copolymers in connection with membrane emulsification. Shirasu Porous Glass (SPG) membranes has been employed as the membrane emulsification equipment, and poly (oligoethylene glycol acrylate)-block-poly (styrene) (POEGA-b-PSt) copolymers prepared via RAFT polymerization. It has been found that a number of different morphologies can be achieved using this novel technique, including spheres, rods, and vesicles. Interestingly, the results have shown that the morphology can be controlled not only by adjusting experimental parameters specific to the membrane emulsification step such as membrane pore size and pressure, but also by changing the nature of organic solvent. As such, this method provides a novel route to these interesting nanoobjects, with interesting prospects in terms of exercising morphology control without altering the nature of the block copolymer itself.


2015 ◽  
Vol 6 (10) ◽  
pp. 1817-1829 ◽  
Author(s):  
Lichao Liu ◽  
Leilei Rui ◽  
Yun Gao ◽  
Weian Zhang

The synthesis and self-assembly of ferrocene-containing block copolymers PEG-b-PMAEFc, and the encapsulation and redox-responsive release of a model molecule (rhodamine B) upon external redox stimuli (H2O2).


2018 ◽  
Vol 11 (3) ◽  
pp. 3571-3581 ◽  
Author(s):  
Laura Evangelio ◽  
Marta Fernández-Regúlez ◽  
Jordi Fraxedas ◽  
Marcus Müller ◽  
Francesc Pérez-Murano

RSC Advances ◽  
2014 ◽  
Vol 4 (32) ◽  
pp. 16721-16725 ◽  
Author(s):  
Gianpaolo Chieffi ◽  
Rocco Di Girolamo ◽  
Antonio Aronne ◽  
Pasquale Pernice ◽  
Esther Fanelli ◽  
...  

A fast method for the preparation of block-copolymer-based hybrid composite nanostructures and titania substrates well oriented over a large area, is illustrated.


Soft Matter ◽  
2009 ◽  
Vol 5 (24) ◽  
pp. 5003 ◽  
Author(s):  
Rina Shvartzman-Cohen ◽  
Chun-lai Ren ◽  
Igal Szleifer ◽  
Rachel Yerushalmi-Rozen

2017 ◽  
Vol 8 (23) ◽  
pp. 3647-3656 ◽  
Author(s):  
Ryoto Tanaka ◽  
Kodai Watanabe ◽  
Takuya Yamamoto ◽  
Kenji Tajima ◽  
Takuya Isono ◽  
...  

The effect of intramolecular cross-linking on aqueous self-assembly behavior was systematically investigated based on an amphiphilic block copolymer system.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44218-44221 ◽  
Author(s):  
Elio Poggi ◽  
Jean-Pierre Bourgeois ◽  
Bruno Ernould ◽  
Jean-François Gohy

We report a novel approach to synthesize well-defined polymeric Janus nanoparticles by combining the self-assembly of block copolymers in thin films and surface modification by polymer grafting.


Sign in / Sign up

Export Citation Format

Share Document