scholarly journals Dynamics in supramolecular nanomaterials

Soft Matter ◽  
2021 ◽  
Author(s):  
Yukio Cho ◽  
Ty Christoff-Tempesta ◽  
Samuel Joshua Kaser ◽  
Julia Ortony

The self-assembly of amphiphilic small molecules in water leads to nanostructures with customizable structure-property relationships arising from their tunable chemistries. Characterization of these assemblies is generally limited to their static...

2014 ◽  
Vol 12 (40) ◽  
pp. 7932-7936 ◽  
Author(s):  
Benjamin M. Schulze ◽  
Davita L. Watkins ◽  
Jing Zhang ◽  
Ion Ghiviriga ◽  
Ronald K. Castellano

Reported is characterization of the self-assembly of π-conjugated oligomers, molecules studied recently in photovoltaic devices, using variable temperature diffusion ordered spectroscopy; the approach has allowed estimation of assembly size, shape, and molecularity.


2003 ◽  
Vol 32 (10) ◽  
pp. 934-935 ◽  
Author(s):  
Hai-Ying Gu ◽  
Rong-Xiao Sa ◽  
Su-Su Yuan ◽  
Hong-Yuan Chen ◽  
Ai-Min Yu
Keyword(s):  
The Self ◽  

2017 ◽  
Vol 46 (25) ◽  
pp. 8304-8305
Author(s):  
Dalia M. Abdel Basset ◽  
Suresh Mulmi ◽  
Mohammed S. El-Bana ◽  
Suzan S. Fouad ◽  
Venkataraman Thangadurai

Correction for ‘Synthesis and characterization of novel Li-stuffed garnet-like Li5+2xLa3Ta2−xGdxO12 (0 ≤ x ≤ 0.55): structure–property relationships’ by Dalia M. Abdel Basset, et al., Dalton Trans., 2017, 46, 933–946.


2010 ◽  
Vol 20 (43) ◽  
pp. 9684 ◽  
Author(s):  
Shanmugam Easwaramoorthi ◽  
Pyosang Kim ◽  
Jong Min Lim ◽  
Suhee Song ◽  
Honsuk Suh ◽  
...  
Keyword(s):  
The Self ◽  

2017 ◽  
Vol 7 (6) ◽  
pp. 20160116 ◽  
Author(s):  
Xuewen Du ◽  
Jie Zhou ◽  
Xinming Li ◽  
Bing Xu

As a novel class of biomaterials, nucleopeptides, via the conjugation of nucleobases and peptides, usually self-assemble to form nanofibres driven mainly by hydrogen bonds. Containing nucleobase(s), nucleopeptides have a unique property—interacting with nucleic acids. Here we report the design and characterization of nucleopeptides that self-assemble in water and are able to interact with single-stranded DNAs (ssDNAs). Containing nucleobases on their side chains, these nucleopeptides bind with the ssDNAs, and the ssDNAs reciprocally affect the self-assembly of nucleopeptides. In addition, the interactions between nucleopeptides and ssDNAs also decrease their proteolytic resistance against proteinase K, which further demonstrates the binding with ssDNAs. The nucleopeptides also interact with plasmid DNA and deliver hairpin DNA into cells. This work illustrates a new and rational approach to create soft biomaterials by the integration of nucleobases and peptides to bind with DNA, which may lead to the development of nucleopeptides for controlling DNA in cells.


1989 ◽  
Vol 156 ◽  
Author(s):  
Aaron Wold ◽  
Kirby Dwight

ABSTRACTThe structure-property relationships of several conducting transition metal oxides, as well as their preparative methods, are presented in this paper. The importance of preparing homogeneous phases with precisely known stoichiometry is emphasized. A comparison is also made of the various techniques used to prepare both polycrystalline and single crystal samples. For transition metal oxides, the metallic properties are discussed either in terms of metal-metal distances which are short enough to result in metallic behavior, or in terms of the formation of a П* conduction band resulting from covalent metal-oxygen interactions. Metallic behavior is observed when the conduction bands are populated with either electrons or holes. The concentration of these carriers can be affected by either cation or anion substitutions. The discussion in this presentation will be limited to the elements Re, Ti, V, Cr, Mo, and Cu.


2014 ◽  
Vol 1673 ◽  
Author(s):  
Jason E. Bara ◽  
Matthew S. Shannon ◽  
W. Jeffrey Horne ◽  
John W. Whitley ◽  
Haining Liu ◽  
...  

ABSTRACTImidazoles present a tunable, versatile and economical platform for the development of novel liquid solvents and polymer membranes for CO2 capture. An overview of our studies in this area is presented, with emphasis on characterization of structure-property relationships in imidazole-based materials through both experimental and computational studies. To this end, a growing library of systematically varied imidazole compounds has been synthesized using only commercial available starting materials and straightforward reactions. Using this library of compounds, we have sought to understand and develop predictive models for thermophysical properties relating to process design, including: density, viscosity, vapor pressure, pKa and CO2 absorption capacity. Furthermore, we have discovered that imidazoles are stable in the presence of SO2 and can form reversible 1:1 adducts, which can be beneficial as SO2 is typically present at ppm levels alongside CO2 in flue gas from coal-fired power plants.


2002 ◽  
Vol 75 (5) ◽  
pp. 853-864 ◽  
Author(s):  
Judit E. Puskas ◽  
Christophe Paulo ◽  
Volker Altstädt

Abstract Structure-property relationships were investigated in hyperbranched polyisobutylenes, in comparison with commercial linear butyl rubber. The gel-free, soluble hyperbranched polyisobutylenes, synthesized by living carbocationic polymerization, had molecular weights, Mw≈400,000 to 1,000,000 g/mol, molecular weight distributions, MWD ≈1.2 to 2.6, and branching frequencies, BR ≈ 4 to 60. The mechanical and viscoelastic characterization of these polymers revealed interesting properties, including the characteristics of crosslinked rubbers.


2008 ◽  
Vol 86 (6) ◽  
pp. 540-547 ◽  
Author(s):  
Tatiana Vassilieff ◽  
Ashok Kakkar

We report on the synthesis and detailed characterization of dendrimers that evolve symmetrically from a linear core of 2-butyne-1,4-diol with 3,5-dihydroxybenzyl alcohol based dendron arms. The divergent layer-by-layer build-up of the dumbbell-shaped dendrimers is based on simple acid–base hydrolytic chemistry of bis(dimethylamino)dimethylsilane with OH-terminated molecules. The self-assembly of these dendrimers in THF and water is significantly influenced by their generation number, the backbone structure, and the solvent.Key words: dendrimers, divergent synthesis, macromolecules, self-assembly


Sign in / Sign up

Export Citation Format

Share Document