Acceptor Engineering of Small Molecule Fluorophores for NIR-II Fluorescent and NIR-I Photoacoustic Imaging

Author(s):  
Yaxi Li ◽  
Hongli Zhou ◽  
Renzhe Bi ◽  
Xiuting Li ◽  
Menglei Zha ◽  
...  

Fluorescence imaging in the second near-infrared window (NIR-II) has been an emerging technique in diverse in vivo applications with high sensitivity/resolution and deep tissue penetration. To date, the designing principle...

2018 ◽  
Vol 6 (8) ◽  
pp. 1238-1243 ◽  
Author(s):  
Zhen-feng Yu ◽  
Jun-peng Shi ◽  
Jin-lei Li ◽  
Peng-hui Li ◽  
Hong-wu Zhang

In vivoluminescent imaging in the second biological window (1000–1400 nm, NIR-II) has attracted increasing attention since it can provide high sensitivity to deep tissuein vivoimaging.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yingying Chen ◽  
Liru Xue ◽  
Qingqing Zhu ◽  
Yanzhi Feng ◽  
Mingfu Wu

Fluorescence imaging technique, characterized by high sensitivity, non-invasiveness and no radiation hazard, has been widely applicated in the biomedical field. However, the depth of tissue penetration is limited in the traditional (400–700 nm) and NIR-I (the first near-infrared region, 700–900 nm) imaging, which urges researchers to explore novel bioimaging modalities with high imaging performance. Prominent progress in the second near-infrared region (NIR-II, 1000–1700 nm) has greatly promoted the development of biomedical imaging. The NIR-II fluorescence imaging significantly overcomes the strong tissue absorption, auto-fluorescence as well as photon scattering, and has deep tissue penetration, micron-level spatial resolution, and high signal-to-background ratio. NIR-II bioimaging has been regarded as the most promising in vivo fluorescence imaging technology. High brightness and biocompatible fluorescent probes are crucial important for NIR-II in vivo imaging. Herein, we focus on the recently developed NIR-II fluorescent cores and their applications in the field of biomedicine, especially in tumor delineation and image-guided surgery, vascular imaging, NIR-II-based photothermal therapy and photodynamic therapy, drug delivery. Besides, the challenges and potential future developments of NIR-II fluorescence imaging are further discussed. It is expected that our review will lay a foundation for clinical translation of NIR-II biological imaging, and inspire new ideas and more researches in this field.


Author(s):  
Pengrui Zhuang ◽  
Ke Xiang ◽  
Xiangxi Meng ◽  
Guohe Wang ◽  
Ziyuan Li ◽  
...  

A facile and green method was developed to fabricate Nd-DTPA on a large scale without byproducts for CT/spectral CT and NIR II fluorescence imaging of the gastrointestinal tract in vivo.


2016 ◽  
Vol 4 (48) ◽  
pp. 7845-7851 ◽  
Author(s):  
Junpeng Shi ◽  
Meng Sun ◽  
Xia Sun ◽  
Hongwu Zhang

Near-infrared persistent luminescence hollow mesoporous nanospheres have been synthesized via a template method. These nanospheres can be used as large capacity drug carriers and realize super long-term and high sensitivity tracking of drug delivery in deep tissue.


2021 ◽  
Author(s):  
Mengyao Zhao ◽  
Benhao Li ◽  
Hongxin Zhang ◽  
Fan Zhang

Fluorescence imaging in the second near-infrared (NIR-II, 1000–1700 nm) window has exhibited advantages of high optical resolution at deeper penetration (ca. 5–20 mm) in bio-tissues owing to the reduced photon scattering and tissue autofluorescence.


2020 ◽  
Vol 13 (03) ◽  
pp. 2030005
Author(s):  
Zhao Lei ◽  
Yun Zeng ◽  
Xiaofen Zhang ◽  
Xiaoyong Wang ◽  
Gang Liu

Noninvasive molecular imaging makes the observation and comprehensive understanding of complex biological processes possible. Photoacoustic imaging (PAI) is a fast evolving hybrid imaging technology enabling in vivo imaging with high sensitivity and spatial resolution in deep tissue. Among the various probes developed for PAI, genetically encoded reporters attracted increasing attention of researchers, which provide improved performance by acquiring images of a PAI reporter gene’s expression driven by disease-specific enhancers/promoters. Here, we present a brief overview of recent studies about the existing photoacoustic reporter genes (RGs) for noninvasive molecular imaging, such as the pigment enzyme reporters, fluorescent proteins and chromoproteins, photoswitchable proteins, including their properties and potential applications in theranostics. Furthermore, the challenges that PAI RGs face when applied to the clinical studies are also examined.


RSC Advances ◽  
2014 ◽  
Vol 4 (77) ◽  
pp. 41164-41171 ◽  
Author(s):  
Yoshikazu Tsukasaki ◽  
Masatoshi Morimatsu ◽  
Goro Nishimura ◽  
Takao Sakata ◽  
Hidehiro Yasuda ◽  
...  

This paper describes the synthesis and optical properties of PbS/CdS quantum dots for in vivo fluorescence imaging.


2019 ◽  
Vol 26 (21) ◽  
pp. 4029-4041 ◽  
Author(s):  
Hai-Yan Wang ◽  
Huisheng Zhang ◽  
Siping Chen ◽  
Yi Liu

Luminescence bioimaging is widely used for noninvasive monitoring of biological targets in real-time with high temporal and spatial resolution. For efficient bioimaging in vivo, it is essential to develop smart organic dye platforms. Fluorescein (FL), a traditional dye, has been widely used in the biological and clinical studies. However, visible excitation and emission limited their further application for in vivo bioimaging. Nearinfrared (NIR) dyes display advantages of bioimaging because of their minimum absorption and photo-damage to biological samples, as well as deep tissue penetration and low auto-luminescence from background in the living system. Thus, some great developments of near-infrared fluorescein-inspired dyes have emerged for bioapplication in vitro and in vivo. In this review, we highlight the advances in the development of the near-infrared chemodosimeters for detection and bioimaging based on the modification of fluoresceininspired dyes naphtho-fluorescein (NPF) and cyanine-fluorescein (Cy-FL).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Na Xie ◽  
Ya Hou ◽  
Shaohui Wang ◽  
Xiaopeng Ai ◽  
Jinrong Bai ◽  
...  

Abstract Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400–750 nm) and NIR-I (750–900 nm) imaging, the NIR-II has a longer wavelength of 1000–1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.


Sign in / Sign up

Export Citation Format

Share Document